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Traditionally set theory lies at the hub of all mathematics in the sense that every 
branch of mathematics, ranging from algebraic geometry to functional analysis, 
is to be considered as developed within some formal system of set theory. Recently 
topos theory, which is a natural generalization of set theory, has provided an 
alternative foundation of mathematics, not to say the foundation of mathematics. 
With these considerations in mind, we quantize topos theory logically along the 
lines of our previous papers. The paper culminates in the quantum treatment of 
classifying toposes. 

I N T R O D U C T I O N  

Since Cantor, set  theory has traditionally been considered to be a formal 
vessel in which every mathematical activity takes place. Therefore any 
upheaval in set theory gravely affects all mathematics, as was demonstrated 
by the discovery of paradoxes in Cantorian set theory during the early years 
of  this century, which was followed by the creation of  a new branch of 
mathematics responsible for foundations of  mathematics, namely, metamathe-  
matics.  Coben's  (1966) epoch-making work established the independence of 
the continuum hypothesis from Zermelo-Fraenkel  set theory and finally led 
to the creation of. another new branch of mathematics called Boolean-valued 
analysis  (Takeuti, 1978). Boolean-valued analysis enables us to approach 
some traditional areas of  mathematics such as functional analysis from a new 
and perspicacious viewpoint. By way of  example, Ozawa (1984) succeeded 
in settling negatively Kaplansky's  (1953, p. 843, footnote) long-baffling 
problem on the uniqueness of  the direct sum decomposition of  type I 
AW*-algebras into homogeneous algebras. 

What are now called Grothendieck toposes were introduced by Grothen- 
dieck and his collaborators in the 1960s so as to provide an adequate frame- 
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work for the development of ~tale cohomology (Artin et al., 1972). Indeed 
the power of the general machinery of French school was shown by Deligne's 
(1974) resolution of the Weil conjectures, which are the mod-p analogue of 
the Riemann hypothesis. Independently of Grothendieck's school, Lawvere 
(1964) embarked upon an intrepid enterprise of providing a chastely categori- 
cal foundation of all mathematics. No sooner had he heard of Grothendieck 
toposes than he realized that they admit the basic operations of set theory. 
During 1969-1970, Lawvere, in collaboration with Tierney, wrote out a large 
part of the basic theory of elementary toposes, which was to be regarded as 
the dawn of topos theory, a principal branch of category theory claiming to 
be a categorical axiomatization of sheaf theory. 

Since the 1970s Foulis and Randall (1972; Randall and Foulis, 1973) 
and their collaborators have enunciated and developed a theory of manuals 
of operations as a formal framework for the foundations of all empirical 
sciences, including quantum theory. In their literature an operation is thought 
of as a set of possible outcomes and a manual of operations is established 
as a family of partially overlapping operations subject to mild constraints. 
In Nishimura (1993) we introduced two major viewpoints. The first is that 
an operation is reckoned not as a set of possible outcomes, but as a complete 
Boolean algebra of observable events; thereby the notion of a manual of 
operations is replaced by that of a manual of Boolean locales, a subcategory 
of the dual category of the category of complete Boolean algebras and their 
complete Boolean homomorphisms subject to a few reasonable conditions. 
The second is that, since each complete Boolean algebra B enjoys its Boolean- 
valued set theory V (B) and each complete Boolean homomorphism qo: B --~ 
B' induces a geometric morphism from the topos of sets and functions within 
V (B') to that within V (B), a manual of Boolean locales yields a family of 
Boolean localic toposes interconnected by geometric morphisms as its empiri- 
cal set theory. Since Nishimura (1995c) we have been engaged in quantizing 
various mathematical structures along these lines under the slogan of logical 
quantization (Nishimura, 1996a, b). 

Recently topos theory has provided an alternative foundation of mathe- 
matics, permeating through the sanctuary of traditional set theory. We now feel 
obliged to give a fuller and more coherent treatment of logical quantization of 
topos theory than the makeshift ones in our previous papers (Nishimura, 
1995c, n.d.-a,b); this is the principal concern of this paper. The paper culmi- 
nates in the quantum treatment of classifying toposes of rings and local rings 
in the last section, which can be generalized easily to classifying toposes of 
geometric theories. Here a ring always means a commutative ring with unity 
and a homomorphism of rings is required to preserve unities. For the geometric 
definition of a local ring, the reader is referred to MacLane and Moerdijk 
(1992, Chapter VIII, w 
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1. C A T E G O R Y  T H E O R Y  

1.1. Elements of Category Theory 

In this paper a category always means a category whose morphisms 
form a set. Therefore a category C is a 6-tuple (Ob C, Mor C, dc, rc, idc, 
~ where: 

(1.1.1) Ob C is a set whose elements are called objects.  
(1.1.2) Mor C is a set whose elements are called morphisms.  
(1.1.3) dc and rc are functions from Mor C to Ob C. 
(1.1.4) idc is a function from Ob C to Mor C such that 

dc(idc(x)) = rc(idc(x)) = x for any x e Ob C 

(1.1.5) ~ is a function from 

Mor C XObC Mor C = {(g , f )  ~ Mor C • Mor Cldc(g)  = rc(f)} 

to Mot  C [the value of o c at (g, f )  is usually denoted by g o c f ]  such that 
dc(g ~ f )  = dc(f )  and rc(g ~ f )  = rc(g) for any (g, f )  ~ Mot C • C 
Mor C. 

(1.1.6) Oc is required to satisfy the associative law, and idc(x) is required 
to play a role of two-sided identity for each x ~ Ob C. 

Unless confusion may arise, the subscript C in dc, rc, idc, and ~ is 
omitted, and idc(x) is usually written idx. 

We assume that the reader is well conversant with the fundamentals of 
category theory, for which the standard reference is MacLane (1971). In 
particular, the reader should feel at home with such locutions as a functor, 
a natural transformation, the opposite category C ~ of  a category C, a limit, 
a colimit, etc. A terminal object of a category C, if it exists, is denoted by 
l c o r  1. 

Given two natural transformations c~: F --> G and 13: G ---> H of  functors 
from a category C to a category D, their vertical composi te  13. ~ is defined 
and is a natural ~ransformation from F to H. 

Given a functor F: B ---> C, a natural transformation c~: G --> G' between 
functors from A to B, and a natural transformation [3: H ---> H'  between 
functors from C to D, the composites F o a and 13 o F are defined and are 
natural transformations from F o G to F o G' and from H o F to H'  o F, 
respectively. If cx': G' ---> G" is another natural transformation between functors 
from A to B and 13': H'  --->/-/" is also another natural transformation between 
functors from C to D, then we have the following: 

(1.1.7) F o (cc' .ct) = (F o o d ) . ( F  o or). 

(1.1.8) (13"13) o F = (13' o bO. (13 o F). 
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1.2. Universes 

To dodge the famous paradoxes of set theory or to paper them over, the 
usage of a universe is a common practice in category theory. Roughly speak- 
ing, a universe is a well-behaved set closed under any standard operation of 
set theory. For the exact definition of a universe, the reader is referred, e.g., 
to MacLane (1971, Chapter I, w Schubert (1972, w or Borceux (1994, 
Vol. 1, w The existence of a universe is disputable from the standpoint 
of axiomatic set theory, but we assume in this paper that there are three 
universes V0, Vl, and V2 with V0 E E l t=: V2" Sets of Vl are called smalli (i 
= 0, 1, 2). The adjective "small;" is applied to structures whose underlying 
sets are small/. By way of example, a category C is called small; if Mor C 
is small;, a functor of small,- categories is called small/, a natural transformation 
between small; functors is called small;, and so on. A category C is called 
smalli-complete (smalli-cocomplete, resp.) if every small/diagram in C has 
a limit (a colimit, resp.) in C. We denote by Ens; the category of small; sets 
and small; functions. We denote by Cat; the category of small,, categories 
and small; functors. Given a small,- category C, we denote by PreSh/(C) the 
category of contravariant functors from C to Ens; and natural transformations. 
The Yoneda embedding of C into PreShi(C) is usually denoted by y. 

1.3. 2-Category 

For the formal theory of 2-categories the reader is referred to Borceux 
(1994, Vol. I, Chapter 7). Since we believe that a good example tells much 
about its general theory, we will explain how the set CAT2 of small2 categories, 
small2 functors, and small2 natural transformations forms a 2-category. The 
set of small2 categories is called the set of objects of CAT2 and is denoted 
by Ob CAT2. Small2 functors and small2 natural transformations are called 
morphisms (or l-arrows) and 2-arrows of CAT2, respectively. Given two 
small2 categories A and B, it is well known that the set CAT2(A, B) of 
functors from A to B and natural transformations among them is a category 
with respect to vertical composition of natural transformations. Given three 
small2 categories A, B, and C and four functors F" A ---> B, G: A ---> B, F ' :  
B ---> C, and G': B --> C, the horizontal composite 13 o c( of two natural 
transformations c(: F ---> G and [3: F '  ---> G' is defined to be either side of 
the following well-known equality: 

(1.3.1) ([3 o G ) ' ( F '  o cx) = (G' o 5).([3 o F) 

Given four small2 categories A, B, C, and D, six functors F: A ---> B, 
G" A ---> B, F ' :  B --> C, G': B .1._> C, F": C --> D, and G": C ---> D, and three 
natural transformations 5: F --> G, [3: F '  --> G', and ~/" F" --> G", it is easy 
to see that 
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(1.3.2) (3' o 13) o et = 3' ~ (13 ~ et) 

Given a small2 functor F: A ---> B, we denote by idF the identity natural 
transformation from F to itself. Then, for any natural transformation et: G 
--> G' of small2 functors G, G': B ---> C and any natural transformation 13: 
H ---> H' of small2 functors H, H': D ---> A, we have 

(1.3.3) c t O i d F = e t o F  
(1�9 idF o13 = Fo13 

Given three small2 categories A, B, and C, six functors F: A ---> B, G: 
A ---> B, H: A ----> B, F ' :  B ---> C, G': B ---> C, and H': B --> C, and four 
natural transformations et: F ---> G, 13: G ---> H, eL': F '  ---> G', and 13': G' ---> 
H', it is easy to see the following interchange law: 

(1.3�9 (13' .ct') o (13.et) = (13' o 13).(ct' o a) 

We recapitulate: 

Theorem 1.3.1. CAT2 is a 2-category with respect to vertical and hori- 
zontal compositions of natural transformations. 

1.4. Orthogonal Category 

The notion of an orthogonal category was introduced by Nishimura 
(1995a). In this paper we need its relativized version with respect to 
smallness0. That is to say, an orthogonal category is a pair (K, OdK) of a 
category K and a class 0dK of diagrams in K subject to the following 
conditions: 

(1.4.1) The category K has an initial object. 
(1.4.2) Every diagram in K is a small0 discrete cocone {x A__> Y}X~A- 
(1.4.3) For any small0 family {Xx}x~A of objects in K there exist an 

object y in K and a family {fx}x~A of morphisms fx: x• ---> y in K such that 

the cocone {xx A__> Y}XeA lies in 0dK. 
(1.4.4) Given a small family {xx}x~A of objects in K, if diagrams {xx 

A 
---> Y}x~A and {x~ -% z}x~a lie in OdK, then there exists a unique morphism 
h: y ---> z in K such that gx = h o fx for each h e A. 

-% Z}X~A and {xs (1.4.5) Given diagrams {y~ ~ Yx}s~ax (h ~ A) in K, 
�9 g ~ , ~  

the diagram {x~ Lzlh E A a n d ~  e A~} lies in 0~K iffthe diagrams {y~ 
g .t8 
~-~ zb,~A and {x~ -o y ~ } ~  (h E A) lie in 0dK, where the sets A~ are 
assumed to be mutually disjoint. 

(1.4.6) If a diagram {xs ~ y l k  ~ A and 6 E A~}g lies in. 0~K, then 
there exist diagrams {x~ L_~ z• (h e A) and {zx -~ Y}X~A In 06K such 
that f~ = hx o g~ for any k ~ A and any g E Ax, where the sets Ax are 
assumed to be mutually disjoint. 
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g 
(1.4.7) If {x~, A__> Y}~.eA and {zs L_~ Y}~a are diagrams in K with zs being h, 

an initial object of K for each ~ E A, then the diagram {xx ---> Y}~,~A is in 
�9 . ] ]  g . .~ 

0~K lff the dmgram {xx L_~ y}~A .k.J {Z~ L_~ Y}~a is ln 0~K. 
(1.4.8) Given diagrams {xx L~> Y}a~A anc~ {x~ -% Y}~a in K, with A 

and A being disjoint, if both the diagram {xx ::> Y}~A and the diagram {xh 
-~ Y}X~A LI {xs ~ Y}~a are in o6K, then x~ is an initial object for each 
c A .  

(1�9 If f: x ---> y is an isomorphism in K, then the diagram {x ~ y} 
lies in o~K. 

(1.4.10) If a diagram {x ~f y} lies in 0dK, thenf i s  an isomorphism. 
(1�9149 Given a diagram {x~, :~ Y}x~a in 0r iffxt andfi,2 happen to 

be the same morphism for some distinct h~, h2 ~ A (so that xx~ = xx2), then 
xh~ = xx2 is an initial object of K. 

The diagrams in 0dK are called the orthogonal sum diagrams of K. If 
a diagram {xx ---> Y}~,EA lies in odK, then y is called an orthogonal sum of 
xx's. Unless confusion may arise, the category K itself is called an orthogonal 
category by abuse of language. 

The inspiring model of an orthogonal category was the dual category 
HLoc0 of the category Hil0 of small0 complex Hilbert spaces and contractive 
linear mappings�9 The dual category BLoc0 of the category Bool0 of small0 
complete Boolean algebras and complete Boolean homomorphisms is also 
an orthogonal category with respect to small0 coproduct diagrams as its 
orthogonal sum diagrams, and will play an important role throughout this 
paper. The objects of BLoc0 are called (smallo) Boolean locales and are 
denoted by X, Y, Z . . . . .  Its morphisms are denoted by f, g, h . . . . .  If a 
Boolean locale X is to be put down as an object of Bool0, then it is denoted 
by.~(X). Similarly, the morphism of Bool0 corresponding to f e Mor BLoc0 
is denoted byg(f ) .  Given a Boolean locale X and p ~ ,.~(X), Xp denotes the 
Boolean locale such that ~(Xp) = { q ~ ,~(X) I q --< p }. We denote the unit 
of the Boolean algebrag(X) by Ix or 1. 

Orthogonal categories were introduced as an abstract framework upon 
which the formal theory of manuals initiated by Foulis and Randall (1972; 
Randall and Foulis, 1973) is to be developed�9 The full treatment of manuals 
within the orthogonal category BLoeo by Nishimura (1993) preceded the 
formal introduction of orthogonal categories themselves�9 Using the nomencla- 
ture of Nishimura (1994a), by a manual of  Boolean locales we will always 
mean a small0 subcategoryJg" of BLoc0 which claims to be a completely 
coherent rich manual within the orthogonal category BLoco. An orthogonal 
sum diagram {X~ -~ X}XEA of Bloc0 lying in�9 is said to be an orthogonal 

.r diagram if for any orthogonal sum diagram {Xx 3_~ X' }X~A of Bioco 
lying in.~/, the unique morphism h: X ---> X' of BLoc0 with gx = h o fx for 
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all k e A in condition (1.4.4) belongs to ~", in which X is denoted symboli- 
cally by ~X~A ~,e X~,. 

2. TOPOS THEORY 

For the general theory of toposes, the reader is referred to Bell (1988), 
Borceux (1994, Vol. 3), Goldblatt (1979), and especially MacLane and Moer- 
dijk (1992). 

2.1. The 2-Categories of Geometric Functors 

Given two small2 toposes E , ,  a geometricfunctor from E§ to E_ is a 
functor E: E§ ---) E_ subject to the following conditions: 

(2.1.1) E has a right adjoint E': E_ ~ E§ 
(2.1.2) E is left exact. 

In other words, a geometric functor from E§ to E_ is no other than the inverse 
image part of a geometric morphism from E_ to E§ in the standard terminology 
(MacLane and Moerdijk, 1992, Chapter VII, w We denote by TOPE the 
2-category of small 2 toposes (as objects), geometric functors among them 
(as morphisms), and natural transformations between parallel geometric func- 
tors (as 2-arrows), which inherits the composition of geometric functors and 
the two kinds of compositions of 2-arrows from the 2-category CATE. The 
objects and morphisms of TOPE constitute a category to be denoted by TOPE. 

Given two geometric functors E: E+ --) E_ and F: F+ --) F_, a geometric 
conjugation* from E to F is a triple (H_, H+, ct) of two geometric functors 
H.:  E ,  --) F• and a natural transformation a: F o H§ ---) H_ o E. Given two 
geometric conjugations* (H_, H+, ct) and (K_, K+, 13) from E to F, a geometric 
transformation* from (H_, H+, ct) to (K_, K+, 13) is a pair (or_, tr+) of natural 
transformations ~_+: H_ --) K• subject to the following condition: 

(2.1.3) 13.(F o cr.) = (cr_ o E).t~ 

Given three geometric conjugations* (H_,/4+, ct), (K_, K§ [3), and (L_, 
L§ ",/) from E to F, the vertical composite of geometric transformations* (or_, 
or+): (H_, H+, et) ---) (K_, K§ 13) and (-r_, "r+): (K_, K§ 13) --~ (L_, L§ 30, 
denoted by (-r_, -r§ ~r+), is defined to be ('r_ .or_, "r+-or+), for which 
we have: 

Proposition 2.1.1. ('r_, "r§ (tr_, cr+) is a geometric transformation* from 
(H_, H+, ct) to (L_, L+, ~/). 
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Proof. Since (or_, or+) and ('r_, %) are geometric transformations, they 
satisfy: 

(2.1.4) 13" (F o or+) = (or_ o E)-ot. 
(2.1.5) 3'' (F o %) = ('r_ o E). 13. 

Therefore the desired condition 

(2.1.6) 3 ' . (F o ('r+.or+)) = (('r_.or_) o E).ct 

follows from the following calculation: 

3'. (F o (%. or+)) 

= 3 ' . ( (F o % ) . ( F  o or+)) [from (1.1.7)] 

= (3'. (F o %)). (F o or+) 

= (('r_ o E)- 13). (F o or+) [from (2.1.5)] 

= ('r_ o E). (13. (F o or+)) 

= ('r_ o E). ((or_ o E)" et) [from (2.1.4)] 

= (('r_ o E)- (or_ o E ) ) .~  

= (('r_.o'_) o E).ot [from (1.1.8)] �9 

We denote by GEOM~'(E, F)  the set of geometric conjugations* from 
E to F and geometric transformations* among them, which is easily seen to be 
a category with respect to vertical composition of geometric transformations*. 

Given three geometric functors E: E+ --> E_, F: F+ --> F_, and G: G+ 
---> G_, we define the composite of geometric conjugations* (H_, H+, or): E 
--> F and (K_, K+, 13): F -o G, in notation (K_, K+, 13) o (H_, H+, c0, to be 
the geometric conjugation* (K_ o H_, K+ o H+, (K_ o or). (13 o H+)) from E 
to G. We would like to show that the set Geom,'  of all geometric functors 
of small2 toposes and geometric conjugations* among them is a category 
with respect to the above composition of geometric conjugations*, for which 
we need to show the following: 

Proposition 2.1.2. Given four geometric functors D: D+ -o D_, E: E+ 
---> E_, F: F+ --> F_, and G: G+ --> G_, let (H_, H+, ct): D --> E, (K_, K+, 
13): E ~ F, and (L_, L+, 3'): F --> G be geometric conjugations*. Then 

((L_, L+, 3') o (K_, K+, 13)) o (H_, H+, ct) 

= (L_, L+, 3') o ((K_, K+, 13) o (H_,  H+, ct)) 
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Proof .  

((L_,  L+, 

= (L_  

= ( L -  

--- (L_  

We note that 

,y) o (K_, K+, [3)) o (H_, H+, or) 

o K_,  L+ o K+, (L_ o [3) . (~ /o  K+)) o (H_ ,  H+, a )  

o K_ o H_ ,  L+ o K+ o H+, (L_ o K_ oc t ) .  ( ( (L_ o [3). (3' o K+)) o H§ 

o K_ o H_ ,  L+ o K+ o H+, (L_ o K_ o a ) -  (L_ o [3 o H+).  (~/o K+ o H+)) 

[by (1.1.8)1 

while we have that 

(L_, L+, ~/) o ((K_, K+, 13) o (H_, H+, a)) 

= (L_,  L+, 7)  o (K_ o H_ ,  K+ o H+, (K_ o e0" ([3 o H+)) 

= (L_ o K_ o H _ ,  L+ o K+ o H+, (L_ o ((K_ o c t ) .  ([3 o H+))) .  (3t ~ K+ o H+)) 

= (L_ o K_ o H _ ,  L+ o K+ o H+, (L_ o K_ oc t ) .  (L_ o [3 o H+).  (',/o K+ o H+)) 

[by (1.1.7)1 

Therefore the desired equality holds. �9 

Coro l la ry  2.1.3.  Geom~ is a category. 

Given three geometric functors E: E+ -o  E_, F: F+ ~ F_, and G: G+ 
G_, two geometric conjugations* (H_, H§ et) and (K_, K§ 13) from E to 

F, and two geometric conjugations* ( H ' ,  H~_, et') and (K L, K~., 13') from F 
to G, we define the horizontal composite of two geometric transformations* 
(or_, or+): (H_, H+, a)  --> (K_, K+, 13) and (x_, %): ( H ' ,  H~., a ' )  ---> 
( K ' ,  K~., 13'), in notation (-r_, "r+) o (o r ,  or+), to be ('r_ o or_, -r+ o or+), for 
which we have to show the following. 

Propos i t i on  2.1.4.  ('r_, -r+) o (or_, or+) is a geometric transformation* 
from the geometric conjugation* (H'_, H~-, or') o (H_, H§ a): E --~ G to the 
geometric conjugation* ( K ' ,  K~_, 13') o (K_, K§ 13): E ~ G. 

Proof .  Since 

(H'_, H~_, or') o (H_,  H+, or) = (H'_ o H_,  H~. o H+, (H'- o or)- (et' o H+)) 

( K ' ,  K~_, 13') o (K_, K§ 13) = (K" o K_, K~. o K+, (K" o 13). (13' o K+)) 

we have to show that 

((K k ~ 13)"(13' o K + ) ) ' ( G  o 'r+ o or+) = ('r_ o or_ o E ) . ( H  k o o O . ( a '  o H+) 
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which follows from the fol lowing calculation: 

('r_ o or_ o E).  (H'._ o o0" (or' o H+) 

= ('r_ o or_ o E).  (idn'_ ~ o0" (or' o/4+) [(1.3.4)] 

= (1"_ o ((or_ o E).  (or)). (or' o H+) [(1.3.5)1 

= ('r_ o (13" (F o or+))). (or' o H+) [(2.1.3)] 

= (K'- o (13. (F o or+)))" ('r_ o F o H+)" (or' o H+) [Definition of  o] 

= (X"  o (13- (F o or+))). ((('r_ o F)- or') o/4+) [(1.1.8)1 

= (K"  o (13. (F o or+))). ((13'. (G o "r+)) o H+) [(2.1.3)] 

= ( K "  ~ 13). ( K "  o ( F  o or+)). (13' o H + ) .  ( G  ~ "r+ o H+) [ (1 .1 .7 ) ,  (1 .1 .8 ) ]  

= (K"  o 13).(13' oK+).(GoK'+ o or+).(G o r+ o H+) [(1.3.1)] 

= ( K "  o 13 ) �9 (13' o K+) .  ( G  o ((K~_ o or+). (1-+ o H+)))  [ (1 .1 .7 ) ]  

= (K'_ o 13). ([3, o K+)- (G o "r+ o or+) [Definition of  o] 

We recapitulate the discussion so far. 

Theorem 2.1.5. G E O M ~  is a 2-category with respect  to vertical and 
horizontal  composit ions o f  geometr ic  transformations*. 

Now we discuss a variant of  the 2-category G E O M * .  Given two geomet-  
ric functors E: E .  ~ E_  and F: F+ ---> F_,  a geometric conjugation, f rom 
E to F is a triple (H_, H§ or) o f  two geometr ic  functors H• E_+ --~ F_+ and 
a natural transformation a:  H_ o E ~ F o H+. Given two geometr ic  conjuga- 
t ions .  (H_, H§ or) and (K_, K+, 13) f rom E to F, a geometric transformation. 
from (H_, H§ or) to (K_, K§ 13) is a pair (or_, or+) o f  natural t ransformations 
or_+: H_+ ---) K• subject to the fol lowing condition: 

(2.1.7) 13- (or_ o E) = (F  o or+)- or. 

A due variant of  the discussion leading to Theorem 2.1.5 establishes 
the following: 

Theorem 2.1.6. The 2 set G E O M ~  of  geometr ic  functors o f  small2 toposes 
(as objects), geometric conjuga t ions .  (as morphisms),  and geometr ic  transfor- 
ma t ions ,  (as 2-arrows) is a 2-category with respect to the fol lowing 
operations: 

(2.1.8) Given three geometr ic  functors E: E+ ~ E_,  F: F+ ----) F_,  and 
G: G+ ---) G_,  the composi te  o f  geometr ic  conjugat ions ,  (H_, H+, ct): E ---) 
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F and (K_, K§ [3): F --~ G, in notation (K_, K§ 13) o (H_, H§ or), is defined 
to be the geometric conjugation. (K_ o H_, K§ o H+, ([3 o H §  o or)). 

(2.1.9) Given three geometric conjugations, (H_, H§ cx), (K_, K+, 13), 
and (L_, L§ ~/) from a geometric functor E of small2 toposes to a geometric 
functor F of small2 toposes, we define the vertical composite of geometric 
transformations, (cr_, or§ (H_, H., a)  ---> (K_, K., 13) and ('r_, "r§ (K_, K+, 
13) --4 (L_, L+, ~/), denoted by ('r_, "r+)- (cr_, cr+), to be ('r_. cr_, "r+. cr+), which 
is to be put down as a geometric transformation, from (H_, H+, a) to (K_, 
K+, "y) by the same token as in Proposition 2.1.1. 

(2.1.10) Given three geometric functors E: E+ ~ E_, F: F+ ---> F_, and 
G: G+ --> G_, two geometric conjugations, (H_, H+, ct) and (K_, K+, 13) 
from E to F, and two geometric conjugations. (H'_, H~_, cx') and (K'_, K~_, 
13') from F to G, we define the horizontal composite of two geometric 
transformations, (o'_, or+): (n_,  H+, or) --> (K_, K+, 13) and ('r_, %): 
(n'_, n~_, cx') -+ (K'-, K~_, [3'), in notation ('r_, %) o (cr_, cr+), to be (q'_ o 
cr_, % o or+), which is to be put down as a geometric transformation from 
(H'_, H~_, et') o (H_, H+, ~x) to (K'-, K~., 13') o (K_, K+, 13) by the same token 
as in Proposition 2.1.4. 

We denote by Geom~ the category of geometric functors of  small2 
toposes and geometric conjugations,. 

We close this subsection with a proposition connecting the two categories 
Geom~ and Geom~ for which we first need to fix some notation and terminol- 
ogy. Let us consider the following diagram in Top2, which is not assumed 
to be commutative at all: 

E 
E+ ) E_ 

F 
F+ > F_ 

G 
G+ > G_ 

Given natural transformations c~: F o H+ --~ H_ o E and 13: G o K+ ---> K_ o 
F, we denote the third component of the composite (K_, K§ 13) o (H_, H§ 
c~) of geometric conjugations* within the category Geom* by 13 o* or, which 
is surely a natural transformation from G o K§ o H+ to K_ o H_ o E. 
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Let  us consider  the fol lowing d iagram in Top2, which is not assumed 
to be commuta t ive  at all: 

H .  K .  
E+ > F+ > G+ 

E- v- - F  G- 

Given  natural t ransformat ions  ~x: H_ o E ---> F o H§ and 13: K_ o F ---> G o 
K§ we denote the third c o m p o n e n t  o f  the composi te  (K_, K§ 13) o (H_,  H§ 
a )  o f  geometr ic  con juga t ions ,  within the category Geom2, by 13 ~ .c~, which 
is surely a natural t ransformat ion f rom K_ o H_ o E to G o K§ o H§ 

Propos i t ion  2.1.7. Consider  the fol lowing d iagram within the ca tegory  
Top2, which is not a ssumed  to be commuta t ive  at all: 

E F 
E > E2 > E 

D D ' ~  D" 

E '  F '  

(3 G G" 

E" b-" 
GI > G2 ~ G3 

Given  four natural t ransformat ions  et: E '  o D --> D '  o E, ~ ' :  E" o G ---> G '  o 
E ' ,  13: F '  o D '  ---> D" o F, and 13': F "  o G '  --> G" o F ' ,  we have  

(2.1.11) (13' o "13) o , (cd  o *a )  = (13' o ,c~') o *(13 o , c 0  

Proof .  This fol lows f rom the fol lowing calculation: 

(13' ~ "13) ~ , ( ~ '  ~ *~) 

= ((G" o 13). (13' ~ D ' ) )  o , ( ( G '  o a )"  ( a '  o D)) 

= (((G" o 13)" (13' o D ' ) )  o E).  (F" o ((G'  o a )"  ( a '  o D))) 

= (G" o 13 o E ) .  (13' o D '  o E ) .  (F" o G '  o a ) .  (F"  o a '  o D )  

[(1.I.7), (1.1.8)] 

= (G" o 13 o E ) .  (G" o F '  o a ) .  (13' o E '  o D)" (F"  o a '  o D)  

[(1.3.D1 
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= (G" o (([3 o E). (F '  o a))) .  ((([3' o E')- (F" oet')) o D) 

[(1.1.7), (1.1.8)] 

= ((6 o E).  (F '  o or)) ~ *((f3' o E ' ) .  (F" o or')) 

= (B'  ~ , a ' )  o *(f~ o , a )  = 

2.2. Topology 

Let us recall that a topology on a topos E with a subobject classifier t: 
1 --> 1-1 is a morphism j: 1-1 --> l l  abiding by the following identities: 

(2 .2 .1) j  o t = t. 
(2.2.2) j o j = j. 
(2.2.3) j o ^  = ^ o ( j •  

A universal  closure operation on E is an assignment to each subobject 
X ~ a of another subobject 2 >---> a (called the closure of x in a) abiding 
by the following conditions: 

(2.2.4) x C_ 2. 
(2.2.5) If x C_ y, then 2 C y. 
(2.2.6) x = 2. 
(2.2.7) f - I (2 )  = f - I (x )  for any morphism f. b ---> a. 

It is well known that there is a bijection between the topologies on E 
and the universal closure operations on E (Borceux, 1994, Vol. 3, Proposi- 
tion 9.1.3). 

A topos endowed with a topology is called a localized topos. Let (E, 
j )  be a localized topos. A subobject x >---> a is said to be dense if 2 = a. An 
object b of  E is called a j - s h e a f  if for any dense subobject s: x >--> a and 
any morphism f. x ---> b there exists a unique morphism g: a --> b such that 
f = g o s. The full subcategory of  E whose objects are all j-sheaves is 
denoted by Sh(E,J) ,  for which the following associated sheaf functor theorem 
is fundamental. 

Theorem 2.2.1. T h e  inclusion functor ij: Sh(E, j )  ~ E has a left adjoint 
aj: E ---> Sh(E, j )  which is left exact. The category Sh(E, j )  is a topos. 
Therefore the pair (ij, aj) forms a geometric morphism from Sh(E, j )  to E. 

For a proof of the above theorem, the reader is referred to Borceux 
(1994, Vol, 3, Theorems 9.2.10, 9.2.11, and 9.3.8). 

A geometric functor E: E+ ---> E_ is said to be localized if both of the 
toposes E+ are localized with topologies j+ and E satisfies the following 
condition: 
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(2.2.8) E(.~) C E(x) for any subobject x >---> a in E+. 

In this case we say that E: (E+,j+) ---> (E_,j_) is a localized geometric functor 
or that E is a localized geometric functor from the localized topos (E+, j+) 
to the localized topos (E_, j_). 

Theorem 2.2.2. Let E: (E+, j+) ---> (E_, j_) be a localized geometric 
functor. Then the functor 

aj_ o E o ij+: Sh(E+, j+) ----> Sh(E_, j_) 

is a geometric functor to be denoted by Sh*(E, j_, j§ 

For the proof of the above theorem the reader is referred to Nishimura 
(1996a, Theorem 2.1.5). 

Theorem 2.2.3. Let E: (El, jl) ---> (E2, j2) and F: (E2, J2) "-'> (E3, J3) be 
localized geometric functors. Then G = F o E is a localized geometric functor 
from the localized topos (Et,jt) to the localized topos (E3,j3), and the functors 
Sh*(G, j3, Jl) and Sh*(F, j3, J2) o Sh*(E, J2, j l)  are naturally isomorphic. 

For the proof of the above theorem the reader is referred to Nishimura 
(1996a, Theorem 2.1.6). As in Nishimura (n.d.-a, Theorem 2.1.7), Theorem 
2.2.3 implies the following: 

Theorem 2.2.4. Let E: (E§ j§ --> (E_, j_) be a localized geometric 
functor. Then the functors aj_ o E and Sh*(E, j_, j§ o ai+ are naturally 
isomorphic. 

2.3. Grothendieck Topology 

Recall that a Grothendieck topology on a category C is an assignment 
L to each a E Ob C of a family L(a) of subfunctors of C(?, a) obeying the 
following conditions: 

(2.3.1) C(?, a) ~ L(a). 
(2.3.2) Let f." b --> a be a morphism of C. Let R and Rfbe subfunctors 

of C(?, a) and C(?, b) respectively. If the following square 

R 

C(?, b)-:-----~C(?, a) 
c(?,f~ 

is a pullback diagram and R E L(a), then Rf ~ L(b). 
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(2.3.3) Let a E Ob C, R a subfunctor of C(?, a), and S ~ L(a). If for 
any b E Ob C and any f: b ---) a E S(b) we have Rf E L(b) with Rf being 
defined as in (2.3.2), then we have R ~ L(a). 

A subfunctor R of C(?, a) for some a ~ Ob C is usually identified with 
a sieve on a, which is by definition a set of morphismsfof C with codomain 
a which is closed under right composition. Given a Grothendieck topology 
L on C and a ~ Ob C, a set S of morphisms of C with codomain a is said 
to L-covera if Siv(S) = {g: b ~ a E Mor CIg = f o  h for somef  ~ S and 
some h E Mor C} ~ L(a). 

The following well-known theorem signifies that the notion of a topology 
on a topos is a good generalization of a Grothendieck topology on a category. 

Theorem 2.3.1. Let C be a small/category (i = 0, 1, 2). Then there is a 
bijection between the topologies on the topos PreShi(C) and the Grothendieck 
topologies on the category C. 

For a proof of the above theorem the reader is referred to Borceux 
(1994, Vol. 3, Proposition 9.1.2). 

A pair (C, L) of a smalli category C and a Grothendieck topology L 
on C is called a (small`.) site. A site (C, L) is said to be finitely complete if 
the category C is finitely complete. For a small`, site (C, L), the topology on 
PreSh`.(C) corresponding to the Grothendieck topology L under Theorem 
2.3.1 is denoted by j[L], and the topos Sh(PreSh`.(C), j[L]) is denoted by 
Sh(C, L), and is called the Grothendieck topos associated with the site (C, 
L). The elements of Sh(C, L) are called L-sheaves. If L happens to be the 
largest Grothendieck topology with respect to which all the representable 
functors on C are L-sheaves, then L is called the canonical Grothendieck 
topology on C. Giraud's theorem (MacLane and Moerdijk, 1992, Appendix, 
w Corollary 2) implies that for any small,- site (C, L) there exists a finitely 
complete small`, site (C', L') such that their Grothendieck toposes Shi(C, L) 
and Sh`.(C', L')  are equivalent. 

Since every poset can naturally be regarded as a category (MacLane, 
1971, p. 11), a complete Heyting algebra t t  in Ens; can be put down as a 
category. We denote Sh`.(l-l, L[H]) simply by Sh`.(I-I), where L[H] is the 
canonical Grothendieck topology on H. 

The following theorem is well known. 

Theorem 2.3.2. For any smalli functor q0: C§ --~ C_, there exists, up to 
natural isomorphisms, a unique functor PreSh*(q~): PreSh`.(C+) ~ Pre- 
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Shi(C_) preserving small,. 
commutative: 

colimits and making the following diagram 

PreSh*(q~) 
PreShi(C+) > PreShi(C_) 

Yl  I y 

C+ > C_ 

For a proof of the above theorem the reader is referred to MacLane and 
Moerdijk (1992, Chapter I, w Corollary 4). 

Theorem 2.3.3. In the above theorem, if C§ is finitely complete and q0 
preserves finite limits, then PreSh*(~p) is a geometric functor. 

Proof. This follows from Theorem 2 of MacLane and Moerdijk (1992, 
Chapter I, w and Theorem 17.1.6(e) of Schubert (1972). �9 

Given two finitely complete sites (C_+, L.) ,  a morphism of  sites from 
(C+, L§ to (C_, L_) is a functor qo from the category C§ to the category C_ 
preserving finite limits and covers, where q0 is said to preserve covers provided 
that for any a E Ob C§ and any S ~ L§ q~(S) L_-covers qo(a). 

Theorem 2.3.4. For any morphism ~p: (C§ L§ ---> (C_, L_) of finitely 
complete small,, sites, the geometric functor PreSh*(q0): PreShi(C§ ---> Pre- 
Shi(C_) is a localized geometric functor from (PreShi(C+), j[L+]) to (Pre- 
Shi(C_), j[L_]), thereby inducing its associated geometric functor 

Sh*(PreSh*(~p), j[L_], j[L§ Shi(C+, L§ --> Shi(C_, L_) 

to be denoted by Sh*(q~, L_, L+). 

Proof. This follows from Theorem 2.2.8 of Nishimura (n.d.-a) and Theo- 
rem 2.2.2. �9 

2.4. Classifying Toposes 

We denote by fp-Rng 0 the category of finitely presented small0 tings 
and homomorphisms. Recall that a ring is said to be finitely presented if it 
is describable by a finite generator together with a finite set of polynomial 
equations. 

Each topos E enjoys intuitionistic logic, and is susceptible of first-order 
interpretations (MacLane and Moerdijk, 1992, Chapter X, w In particular, 
we can consider the category of rings and homomorphisms within the topos 
E to be denoted by Rng(E). 
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Theorem 2.4.1. For any smallrcocomplete small2 topos E, there is an 
equivalence of categories 

TOP2(PreShl((fp-Rng0)~ E) _7_> Rng(E) 

which is natural in E. 

For a proof of the above theorem the reader is referred to MacLane and 
Moerdijk (1992, Chapter VIII, w Theorem 2). 

Several equivalent definitions of a local ring in classical mathematics 
have their nonequivalent ramifications in intuitionistic mathematics. For a 
standard geometric definition of a local ring in a topos E, the reader is 
referred to MacLane and Moerdijk (1992, Chapter VIII, w Given a topos 
E, we denote by LocRng(E) the category of local rings and homomorphisms 
in E. We denote by Lz~ the minimal Grothendieck topology on (fp-Rng0) ~ 
subject to the following condition: 

(2.4.1) For any finitely presented small0 ring A and any elements at, 
. . . .  an ~ A such that al + "'" + an = 1, the dual family of canonical 
projections A ---> A[a/l]  (1 --< i <- n) Lza~-covers A. 

Theorem 2.4.2. For any smallt-cocomplete small2 topos E, there is an 
equivalence of categories 

TOP2(Shl((fp-Rng0) ~ Lz~), E) --~ LocRng(E) 

which is natural in E. 

For a proof of the above theorem, the reader is referred to MacLane 
and Moerdijk (1992, Chapter VIII, w Theorem 3). 

2.5. Boolean Localic Toposes 

A topos E is called localic i (i = 0, 1, 2) if it obeys the following 
conditions: 

(2.5.1) There exists a geometric morphism from E to Ensi. 
(2.5.2) The subobjects of a terminal object 1 of E form a class of 

generators. 

Any complete Heyting algebra H in the topos Ens,. gives rise to a localici 
topos Sh/(H), and the localic~ toposes are characterized by the following 
theorem. 

Theorem 2.5. I. For any localici topos E, there exists an essentially unique 
complete Heyting algebra H in Ens/such that Sh,-(l-I) is equivalent to E. 
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For a proof of the above theorem, the reader is referred, e.g., to Johnstone 
(1977, Theorem 5.37) and Bell (1988, Theorem 6.4 and Corollary 6.5). 

A topos E is said to be Boolean if its internal logic is classical. Any 
complete Boolean algebra B in the topos Ens,. gives rise to a Boolean localici 
topos Sh~(H), and the following theorem is an easy consequence of Theo- 
rem 2.5.1. 

Theorem 2.5.2. For any Boolean localic~ topos E, there exists an essen- 
tially unique complete Boolean algebra B in Ensi such that Shi(B) is equivalent 
to E. 

There are other representations of Boolean localici toposes. One is Scott 
and Solovay's construction of Boolean-valued models V} B) in axiomatic set 
theory. Each element of V! s) is a function ~ whose domain.~(~) is a subset 
of V} B) and which takes values in B. The elements of V~ a) are constructed 
by transfinite induction on ordinals in V~. For the details of the construction 
of V! B) the reader is referred to any standard textbook on axiomatic set theory 
such as Jech (1978) or Takeuti and Zaring (1973). What is important to notice 
for our later developments is only that V! B~ is a model of ZFC and that the 
category of sets and functions within V! B) is equivalent to Sh~(B). 

Other highly useful representations of a Boolean localic; topos is the 
category BEns~(B) of small,- B-valued sets and the category BEns~(B) of 
complete small,. B-valued sets for some complete Boolean algebra B in Ens~. 
The latter category is a full subcategory of the former, and the inclusion 
functor of the latter category into the former is an equivalence of categories. 
Given a Boolean locale X, we write BEnsi(X) and BEnsi(X) for BEnsi(_~(X)) 
and BEnsi(_~(X)), respectively. An object of BEnsi(X) is called a (smalli) 
X-set, and a morphism from an X-set (~', 1[. = .]~e) to an X-set (~, 1[. = .]~) 
can be represented by an X-function from the former to the latter, which is 
a function/from g/to ~"subject to the following conditions: 

(2.5.3) ~x = y~/--< ~/(x) = / ( y ) ~ 7  for all x, y ~ $/. 
(2.5.4) ~(x)  = / ( x ) ]  7'< Ux = x] ~/for all x ~ ~'. 

For a full treatment of the categories BEnsi(X) and BEnsi(X) the reader 
is referred to Goldblatt (1979, w167 14.7). 

Theorem 2.5.3. Let E~- be Boolean localici toposes, so that they can be 
assumed to be of the form Shi(B+) for complete Boolean algebras B• in 
Ens,.. Then there is a bijective correspondence between the complete Boolean 
homomorphisms from B§ to B_ and the geometric functors from E§ to E_, 
where two geometric functors from E+ to E_ are identified so long as they 
are naturally isomorphic. 
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For a proof of the theorem, the reader is referred to MacLane and 
Moerdijk (1992, Chapter IX, w Proposition 2). 

The theorem implies that a morphism f: X_ ---> X+ of Boolean locales ~g 
induces a geometric functor fn~,si: BEnsi(X+) ---> BEnsi(X_). 

Given a morphism f: X_ ---> X+ of Boolean locales and smalli X• 
(~/~, [[" = "~x• an f-function is a func t ion / f rom ~+ to ~'_ subject to the 
following conditions: 

(2.5.5) [Ix = y]lx+ --- ~kt(x) = / (Y) ]x_  for all x, y E ~'+. 
(2.5.6) ~/(x) = / (X) ]x_  < [Ix = X]]x§ for all x ~ ~'. 

As remarked in Nishimura (1996a, Theorem 2.5.1), we have the follow- 
ing result. 

Proposition 2.5.4. Given a morphism f: X_ ----> X+ of Boolean locales 
and smalli X_+-sets (~+_, [[. = "]Ix• there is a bijection between the f-functions 
from (~'+, ~. = "Ix§ to (~'_, I[" = "Ix_) and the X_-functions from 
f~E,~,((~'+, 1[" = "Ix+)) to (~ - ,  [" = "h-) .  

3. B O O L E A N I Z A T I O N  M A C H I N E R Y  

3.1. T wo  F u n d a m e n t a l  Transfer  Principles  

Topos theory is a natural generalization of set theory, though the underly- 
ing logic of a topos is not necessarily classical, but only intuitionistic. It is 
well known that Boolean localici toposes enjoy classical set theory in principle 
(i = 0, 1, 2). For those well conversant with logic, the easiest way to see 
this is to represent a given Boolean localici topos in the form of V! B) with a 
complete Boolean algebra B in V, and then to proceed via the following 
fundamental theorem of Boolean-valued set theory. 

Theorem 3.1.1. If 0 is a theorem of ZFC, then so is I[0]B = 1 with respect 
to V~ ). 

For the pro6f of the above theorem, the reader is referred to any standard 
textbook on axiomatic set theory such as Jech (1978, Theorem 43) or Takeuti 
and Zaring (1973, Theorem 13.12). Since all classical mathematics (=  mathe- 
matics based on classical logic), ranging from algebraic geometry to functional 
analysis, is considered to be developed within classical set theory, every 
concept and each theorem of classical mathematics can be transferred to 
V! ~), which we would like to call the set-theoretic version of thefirst Boolean 
transfer principle. Indeed the principle lies at the hub of Boolean mathematics 
institutionalized by Takeuti (1978). 

Our topos-theoretic version of first Boolean transfer principle should be 
weaker than its set-theoretic version, since toposes do not admit of interpreta- 
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tions of the full language of ZFC, but are susceptible only of Mitchell- 
Brnabou languages. In any case, any Boolean localici topos is equivalent to 
the category of sets and functions in V~ a~. Therefore a prudent formulation 
of the topos-theoretic version of the first Boolean transfer principle goes 
as follows: 

Theorem 3.1.2. Any valid statement of classical mathematics which is 
interpretable in toposes is valid in any Boolean localici topos. 

For a full treatment of topos theory by using a Mitchell-Brnabou lan- 
guage, the reader is referred to Bell (1988). For a readable account of the 
relationship between the set-theoretic and topos-theoretic foundations of 
mathematics, the reader is referred to MacLane and Moerdijk (1992, Chapter 
VI, w 10). Since toposes are rich domains in which most of the meaningful 
statements of mathematics are interpretable, Theorem 3.1.2 implies that Bool- 
ean localici toposes enjoy classical mathematics. 

Let q0: B+ ---> B_ be a complete Boolean homomorphism of complete 
Boolean algebras B• of V,. A function ~: V! a§ ---> V! a-~ is defined by 
transfinite induction as follows: 

(3.1.1) ~(~) = I (~('q), q0(~(~q))) I -q E ..~(~) } 

Now our second Boolean transfer principle is based on the following 
simple theorem of Boolean-valued set theory. 

Theorem 3.1.3. If 0(xl . . . . .  Xn) is a formula of the language of ZFC 
with free variable among x~ . . . . .  xn in which every quantifier is bounded, 
and if ~t . . . . .  ~n are elements of V! B+), then we have the following: 

(3 .1 .2 )  ~0 (# , (~ )  . . . . .  ~(~n))llB_ = ~ ( l I0 (~  . . . . .  ~.)nB+). 

The proof of the above theorem is essentially the same as that of Theorem 
13.18 of Takeuti and Zaring (1973). 

Since many-sorted first-order languages are interpretable in toposes 
(MacLane and Moerdijk, 1992, Chapter X, w and the function ff~ naturally 
induces a geometric functor corresponding to q~ in Theorem 2.5.3, Theorem 
3.1.3 implies the following, the second Boolean transfer principle. 

Theorem 3.1.4. Let E: E+ ~ E_ be a geometric functor between Boolean 
localici toposes. Let T be a theory in a many-sorted first-order language. 
Then E naturally induces a functor Er from the category Mod(E+; T) of 
models of T in E+ to the category Mod(E_; T) of models of T in E_. 

Another way to see the validity of Theorem 3.1.4 is to see that the 
geometric morphisms determined by E are open (Nishimura, 1993, Theorem 
2.13; MacLane and Moerdijk, 1992, Chapter IX, w Proposition 2) and then 
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to take Corollary 4 of MacLane and Moerdijk (1992, Chapter X, w into 
consideration. We note in passing that if T is a geometric theory, then the 
conclusion of Theorem 3.1.4 holds for any geometric functor E: E+ ---> E_ 
of toposes, for which the reader is referred to Corollary 6 of MacLane and 
Moerdijk (1992, Chapter X, w Therefore a geometric functor E: E+ ---> E_ 
of toposes naturally gives rise to functors Ecat: Cat(E+) ---> Cat(E_), ER,g: 
Rng(E§ ---> Rng(E_), and Et~cR.g: LocRng(E+) --> LocRng(E_), where 
Cat(E+), Rng(E• and LocRng(E• stand for the categories of categories, 
rings, and local rings within the toposes E+ respectively. If the toposes E• 
are Boolean localic/, then it induces a functor Etp-Rng: fp-Rng(E+) --> fp. 
Rng(E_), where fp-Rng(E:) stand for the categories of finitely presented 
rings within the toposes E_~. 

On account of Theorem 2.5.3, a mo~hism f: X_ ---> X+ of Boolean 
locales gives rise to a geometric functor fnen~/: BEnsi(X+) --> BEnsi(X_). 
We denote the functors 

(fBEnsi)Cat: Cati(X+) ---4 Cat/(X_) 

(fl~Ens/)nng: Rngi(X+) --> Rngi(X_) 

(fnE~/)t~l~g: LocRngi(X+) --~ LocRng/(X_) 

f* ( n~mi)fp-R.g: fp-Rngi(X+) --~ fp-Rng/(X_) 

by f* * f* f* cat/, fRug~, I~Rn~, and fp-Rng/, respectively, where Cat/(X+_), Rngi(X+_), 
LocRng/(X_+), and fp-Rngi(X_+) stand for the categories Cat(BEnsi(X~)), 
Rng(BEnsi(X_+)), LocRng(BEns/(X+_)), and fp-Rng(BEns/(X~)), 
respectively. 

3.2. Booleanized Category Theory 

Let X be a Boolean locale with B =~.~(X), which shall be fixed through- 
out this subsection. By simply interpreting the notion of a category within 
the topos BEnsi'(X) (i = 0, 1, 2), we get the notion of a (smalli) X-category, 
which is externally a 6-tuple (Ob ~,  Mot ~,  d~, r~, idle, o~), where: 

(3.2.1) Ob ~' and More ~ are small/X-sets. 
(3.2.2) d~ and r~ are X-functions from Mot ~ to Ob ~.  
(3.2.3) idle is an X-function from Ob ~' to Mor ~ such that [Ix = y]]Ob~' 

= [[id~x) = id~-4,y)] M~ ~ for all x, y ~ Ob ~'. 
(3.2.4) o~ is an X-function from 

M o r ~  • Mor ~' = {(g,f) ~ M o r ~  • Mor ~ld~e(g) = r~e(f)} 

to Mot ~,  where we note that Mor ~' • ~ Mot ~' is an X-subset of Mor 
~' • x Mor ~.  
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(3.2.5) If we regard Ob ~ and Mor ~ as mere sets, then the 6-tuple 
(Ob ~,  Mor ~ ,  d~, r~., ida, o~) is a category in the usual sense. 

Unless confusion may arise, the subscript ~ in d~, r~., ida, and o~ is 
usually omitted. Given p ~ B, the full subcategory of the category ~' whose 
objects are all x ~ Ob ~ with [Ix = x]] -< p can naturally be rated as an Xp- 
category and is denoted by ~fp.  Given p ~ B, the full subcategory of the 
category ~' whose objects are all x ~ Ob ~ with ~x = x]] = p is called the 
p-slice of the X-category ~ and is denoted by ~[p].  The objects and morph- 
isms of ~[ lx]  are called total objects and total morphisms of ~'. 

Such fundamental notions of category theory as that of a functor and 
that of a natural transformation are easily interpretable within the topos 
BEns,-(X) to yield externally the notion of an X-functor and that of a natural 
X-transformation. By way of example, an X-functor from an X-category ~' 
to an X-category ~ is a functor from the category ~' to the category 
satisfying the following condition: 

(3.2.6) The ass ignmentf  E Mor ~' ~ 9-(f) ~ Mor ~ is an X-function. 

Given an X-functor ~." ~' ~ . ~  of X-categories and p E B, we write 
~[p]  for the functor from the category ~'[p] to the category ~ [ p ]  induced 
by ~.. 

Given two X-functors ~,, l :  ~ ~ .~ of X-categories, a natural X- 
transformation is a natural transformation a from the functor,~-to the functor 
i subject to the following condition: 

(3.2.7) The assignment x ~ Ob ~ ~ a.~ ~ Mor_~ is an X-function. 

Given two X-functors ~,, i :  ~ ---).~ of X-categories, a natural X- 
transformation a:~----) t ,  and p E B, we write a[p] for the natural transforma- 
tion from the functor ~[p]  to the functor if[p] induced by a. 

For a fuller treatment of such considerations, the reader is referred to 
Nishimura (1995c). 

The interpretation of  the notion of finiteness within the topos BEnsi(X) 
gives rise to that of X-finiteness externally. A smalli X-category ~' is called 
smallrX-complete (X-finitely X-complete, resp.) if it is complete (finitely 
complete, resp.) internally within the topos BEnsi(X). Now it is easy to see 
the following result: 

Proposition 3.2.1. Let ~' be a small; X-category such that ~[ lx]  has a 
terminal object. Then the X-category ~ is small,-X-complete (X-finitely X- 
complete, resp.) iff the category ~[ lx]  is smallrcomplete (finitely com- 
plete, resp.). 
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A small/ X-category ~ is called smallc-X-cocomplete (X-finitely X- 
cocomplete, resp.) if it is cocomplete (finitely cocomplete, resp.) internally 
within the topos BBns;(X). It is easy to see that 

Proposition 3.2.2. Let ~' be a small/X-category such that ~'[lx] has an 
initial object. Then the X-category cg is small;-X-cocomplete (X-finitely X- 
cocomplete, resp.) iff the category ~[  1 x] is small;-cocomplete (finitely cocom- 
plete, resp.). 

By interpreting of a limit (colimit, resp.) in the topos BEnsi(X), we get 
the notion of an X-limit (X-colimit, resp.), for which we have the following 
two propositions. 

Proposition 3.2.3. Let ~ be a small; X-category such that rg[lrd has a 
terminal object. Let 9 - b e  an X-functor from ~ to a small/X-category ~ .  
Then X-functor 9-preserves small/X-limits (X-finite X-limits, resp.) iff the 
functor-~[lx] preserves small/limits (finite limits, resp.). 

Proposition 3.2.4. Let ~ be a small; X-category such that ~[ lx]  has an 
initial object. Let 9-be an X-functor from ~' to a small; X-ca tegory , .  Then 
X-functor ~-preserves small; X-colimits (X-finite X-colimits, resp.) iff the 
functor~'[lx] preserves small; colimits (finite colimits, resp.). 

By interpreting the notion of a left (right, resp.) adjoint of a functor 
within the topos BEns;(X), we get the notion of a left (right, resp.) X-adjoint 
of an X-functor, for which it is easy to see the following. 

Proposition 3.2.5. An X-functor ~:  ~ ---)~" of small; X-categories with 
~'[lx] being nonempty has a left (right, resp.) X-adjoint iff the functorS~[lx]: 
~'[lx] --~-~[lx] has a left (right, resp.) adjoint. 

3.3. Relations Between Two Booleanized Categories 

Let f: X_ --~ X+ be a morphism of Boolean locales, which shall be fixed 
throughout this Subsection. 

Given X• ~_+, a functorg-from the category ~+ to the category 
~'_ is called an f-functor if it obeys the following condition: 

(3.3.1) The assignmentf ~ Mor ~§ ~ o~f) E Mor ~_  is an f-function. 

Given an f-functor ~." ~§ ~ ~'_ of X._-categories and p ~ 9(X+), we 
write ~'[p] for the functor from the category ~'§ t the category ~_[p] 
induced by ~ .  

Given two f-functors .~,, ~': ~§ ---) ~'_ of X• a natural f- 
transformation is a natural transformation ct from the functor~-to the functor 
~" subject to the following condition: 
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(3.3.2) The assignment x ~ Ob ~§ ~ ax e Mor W_ is an f-function. 

Given two X-functors ~,, ~': ~ ---> .~ of X-categories, a natural X- 
transformation a:5~----> if, and p e B, we write a[p] for the natural transforma- 
tion from the functor ~[p]  to the functor ~'[p] induced by a. 

Proposition 2.5.4 implies the following. 

Proposition 3.3.1. Let W_~ be as above. There is a bijection between the 
f-functors from ~+ to W_ and the X_-functors from f~t(W+) to W_. 

Proposition 3.3.2. Let ~'+ be a small/X+-category such that ~[Ix+] has 
a terminal object. Let o~-be an f-functor from W to a small,- X_-category_qL 
Then f-functor 3-maps smalli X+-limits (X+-finite X+-limits, resp.) to X_- 
limits iff the functor,.~[lx] preserves small/limits (finite limits, resp.). 

Proposition 3.3.3. Let W+ be a smalli X+-category such that W[lx+] has 
an initial object. Let ~ be an f-functor from W to a small/X_-category _qr 
Then f-functor~-maps smalli X+-colimits (X+-finite X+-colimits, resp.) to X_- 
colimits iff the functor~'[ Ix] preserves small/colimits (finite colimits, resp.). 

4. QUANTIZATION MACHINERY 

Let us introduce the category to be denoted by BCat2. Its objects are 
all pairs (X , J )  of a Boolean locale X and a small2 X-category.~. A morphism 
from (X, ~ to (~, ~ ' )  in BCat2 is a pair (f, ~-) of a morphism f" X --> Y in 
BLoco and an f-functor ~." ~ --> ~'. The composition (g, ~Y) o (f, ~-) of 
morphisms (f, ~): (X,~)  --> (Y,~') and (g, ~): (Y,~) --> (Z, ~)  in BCat2 is 
defined to be (g o f, ~-o ~'). As discussed in Nishimura (1995c, w the 
category BCat2 has smallo coproducts with respect to which the category 
BCat2 can and shall be put down as an orthogonal category. The assignments 
(X, .~  E Ob BCat2 ~ X ~ Ob BLoco and (f, ~ E Mor BCat2 ~ f ~ Mot 
BLoco constitute a functor to be denoted by Ont~. 

We now introduce a category to be denoted by BObj2. Its objects are 
all triples (X, ~', a) such that (X, ~/) ~ Ob BCat2 and a is a total object of 
the X-category ~'. A morphism from (X, ~', a) to (Y, ~ ' ,  b) in BObj2 is a 
triple (f, ~,,/) such that (f, 3 )  is a morphism from (X, ~ to (Y, ~ ' )  in the 
category BCat2 a n d / i s  a total morphism from ~(b) to a in the X-category 

~ .  The composition (g, .Y,g ) o (f, ~,,/) of (f, ~ , / ) :  (X,~ r a) --> (Y, ~ ' ,  b) and 
(g, ~ ,g  ): (Y, ~ ' ,  b) ---> (Z, ~,  c) in BObj2 is defined to be (g o f, 9-o ~ , / o  

). It is easy to see that the category BObj2 has smallo coproducts with 
respect to which BObj2 can and shall be put down as an orthogonal category. 
The assignments (X,.~', a) E Ob BObj2 ~ (X, ~ )  ~ Ob BCat2 and (f, ~ ,  
/ )  ~ Ob BObj2 ~ (f,.~) ~ Mor BCat2 constitute a functor from the category 
BObj2 to the category BCat2 to be denoted by Oncat- 
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Let.Z," be a manual of Boolean locales, which shall be fixed throughout 
the rest of this section. An empirical framework over~g is a functor �9 from 

~e' to BCat2 subject to the following conditions: 

(4.1) It maps orthogonaLg-sum diagrams to orthogonal sum diagrams 
in BCat2. 

(4.2) OBI~ o CI) is the identity functor o f .g  into BLoc0. 

For an empirical framework ~ over.g, we denote by ~ , ,  the function 
with the same domain of �9 such that ~(X) = (X, cI)~e~,(X)) for each X �9 
Ob~g and ~(f) = (f, cI)~,r for each f �9 Mor.g. 

Given an empirical framework dp over.g, we now introduce a category 
to be denoted by EObj(CI)). Its objects are all functors ~ from..g to BObj2 
abiding by the following conditions: 

(4.3) It maps orthogonal~'-sum diagrams in~" to orthogonal sum dia- 
grams in BObj2. 

(4.4) OBCat o ~ : (I). 

Given such a functor ~:..g---> BObj2, we denote by ~ #  the function 
with the same domain of ~ such that the value of ~e# (?) is the third component 
of the triple ~(?). A morphism from ~ to @ in EObj(cI)) is an assignment 

to each X �9 Ob.Z," of a total morphism Ix: ~,#(X) ---> ~a#(Y) satisfying 
the following condition: 

(4.5) The diagram 

~(0(~Y)~ 

is commutative for every f: X ---> Y �9 Mor.g. 

c ~  
) ~S,,#.(X) 

> N~,~ (x) 

The composition ~q o ~ of morphisms ~: ~ ---> ~ and Xl: g6 ---> ~ in 
EOBj(~)  is defined to be the assignment X �9 Ob .g  ~ Xlx o ~x- 

5. EMPIRICAL TOPOS THEORY 

5.1. Booleanization 

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. By interpreting the notion of a small2 topos in the topos BEns2(X), 
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we get the notion of a (small2) X-topos, for which it is easy to see the 
following result: 

Proposition 5.1.1. A small2 X-category ~' is an X-topos iff g~[Ix] is 
a topos. 

By interpreting the notion of a geometric functor of small2 toposes 
within the topos BEns2(X), we get the notion of a geometric X-functor of 
small 2 X-toposes, for which it is easy to see the following. 

Proposition 5.1.2. Given small2 X-toposes ~+, an X-functor g" from the 
X-category ~+ to the X-category g'_ is a geometric X-functor from the X- 
topos g'+ to the X-topos ~'_ iff~'[lx] is a geometric functor from the topos 
g'+[lx] to the topos ~'-[lx]. 

Proof. This follows from Proposition 3.2.3 and 3.2.5. �9 

By interpreting the notion of a topology on a small 2 topos within the 
topos BEns2(X), we get the notion of an X-topology on a small 2 X-topos ~', 
which is a topology on the topos g'[lx]. A (small2) localized X-topos is a 
pair (~ , / )  of a small2 X-topos ~ and an X- topology/on ft. Given a localized 
X-topos (g",/), its associated X-topos ~'~)f(X; ~ ' , / )  can be obtained simply 
by interpreting Sh (~ , / )  within the topos BEns2(X) and the left X-adjoint of 
the inclusion X-functor6 of~,Sff(X; g ' , / )  into g' is denoted b y a .  

Given an X-topos ~', by interpreting the notions of Cat(g~), Rng(go, and 
LocRng(go within the topos BEns2(X), we get the notions of,~'ff~(g'), 

~ ' ~ ( g o ,  and ~ (gO externally. By interpreting the notion of Ensi 
within the topos BEns2(X) (i -- 0, l, 2), we get the external notion of 

~'~,.~,-(X), which is an X-topos. By interpreting the notions of Cat/, Rng;, 
LocRng;, and fp-Rng,, within the topos BEns2(X), we get the notions of 
�9 . ~ ' a 2 " i ( X ) , ~ i ( X ) , , . ~ i ( X ) ,  and /~-~ .c~ i (X)  externally. 

5.2. Relat ions  Be tween  Two Boo lean iza t ions  

Let f: X_ --> X+ be a morphism of BLoc, which shall be fixed throughout 
this subsection. Given small2 X+_-toposes $'+, a geometric f-functor from the 
X+-topos ~"§ to the X_-topos ~'_ is an f-functor $' from the X+-category g'§ 
to the X_-category ~'_ subject to the following condition: 

(5.2.1) ~'[lx§ is a geometric functor from the topos ~§ to the 
topos g'-[lx_]. 

Given two geometric f-functors ~': ~'+ ---> ~_ and,~ ~+ -->3-_, a geometric 
f-conjugation from the geometric f-functor ~' to the geometric f-functor3-is 
a triple (~_,X~+, or) of two geometric X_*-functorsXr g'• ---> 3-_* and a natural 
f-transformation ct: o~-o,~+ -->XCL o ~ subject to the following condition: 
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(5.2.2)(~_[lx_],,~+[lx+], a[lx+]) is a geometric conjugation from the 
geometric functor g'[lx+]: g~+[lx§ to the geometric functor 
9 [  Ix+]: ~+[ lx+] ---) 9-- [ Ix_]. 

Given two geometric f-conjugations (~_,,~+, a) and f,q~_, ~§ 13) from 
a geometric f-functor g': if+ ---) ~'_ to a geometric f-functor ~ .  -Y+ ---) 3-_, a 
geometric f-transformation from (e~-,~+, or) to (~_,~.+, 13) is a pair (or_, cr+) of 
natural Xx-transformations cr+,:,,~C'x ---)~_+ subject to the following condition: 

(5.2.3) (cr_[lx_], ~r+[lx+]) is a geometric transformation from the geo- 
metric conjugation 

(~-[lx_],~+[lx+], a[lx+]): g'[lx+] ---~ ~'[lx+] 

to the geometric conjugation 

(~-[lx_],2g~+[lx+], 13[1x+]): g'[lx+] ---).~[lx+] 

Given small2 localized X• (g'+,,/+,), a geometric f-functor g': 
~+ ---) g'_ is said to be localized with respect to,/+_ if the geometric functor 
g'[lx+]: g'+[lx+] ~ g'-[lx_] is localized with respect to,/• In this case the 
geometric f-functor g" naturally induces a geometric f-functor 

~'Sr g ' , / _ , /+ ) :  ~'S~(X+; g'+,j+) ~ 9 ~ ' ( X _ ;  8"_, /_)  

bya~_ o g' ~ 
A geometric f-functor g': g~+ ---) g~_ of X_+-toposes naturally gives rise 

to f-functors 
g'~v,r ~'~',~(~'+) 

~ , , :  ~ '~ ,~  (g'+) 

The morl2hism f: X_ ~ X+ of Boolean 
functor f ~  i: "~'g'~ i (X+) ---) ..~g',-~ i (X_), 

~ i :  ~'~',e,. (X+) 

f ~ i :  ~ i(X+) 

Proposition 2.5.4 implies the following: 

Proposition 5.2.1. Let ~•  be small2 X• Then there is a 
bijection between the f-functors from g~§ to ~'_ and the X_-functors from 
i~w2(~+) to ~'-. 

---) ~,~,~,(g'_) 

~ ~ ( g ' _ )  

locales gives rise to a geometric f- 
which then induces f-functors 

~ ~'~'~,.(X_) 

~ . ~ , . ( X _ )  

""~ ~ i (X-) 

~ - ~ ,  i (x-)  
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5.3. Quantization 

LetoZ/be a manual of Boolean locales, which shall be fixed throughout 
this subsection. A (small2)/,t'-topos is a function ~ on ObJt" U Mor..~" subject 
to the following conditions: 

(5.3.1) ~E(X) is a small2 X-topos for each X E Ob.g. 
(5.3.2) ~(f)  is a geometric f-functor from ~EfY) to ~(X) for each f: X 

Y ~ M o r ~ .  
(5.3.3) The assignments X ~ Ob.Zt ,-, (X, ~(X))  and f e Mor.,K," 

(f, ~(t))  constitute an empirical framework over Jr'. 

A smal121t'-topos �9 is said to be smalln~t'-cocomplete if ~(X) is smallt- 
cocomplete for any X E Ob..~'. 

Given twoJd-toposes ~_., a geometric~'-functor from ~E+ to ~ _  is a 
pair (~, or) of  an assignment ~ of a geometric X-functor ~E(X): ~+(X) ---> 
Z_(X) to each X ~ Ob-,~" and a natural f-transformation ct(f): ~E_(f) o ~ (y )  

~(X) o ~+(f) to each f: X --~ Y E Mor..gabiding by the following condition: 

(5.3.4) For each f: X ~ Y ~ Mor.Z/, the triple (~(X), ~(Y), or(f)) is a 
geometric f-conjugation from the geometric f-functor 5E§ ~+(Y) ~ ~+(X) 
to the geometric f-functor ~E_(f): ~E_(Y) ~ ~_(X).  

Given two~'-toposes ~_+ and two geometric./t'-functors (~, cx) and (@, 
13) from Z .  to Z_,  a natural.Jr-transformation from (~, or) to (@, 13) is an 
assignment of a natural X-transformation ~(X): ~(X) ~ @(X) to each X 
Ob./t" subject to the following condition: 

(5.3.5) For each f: X ---> Y ~ Mor..~f', (cr(X), or(Y)) is a geometric f- 
transformation from the geometric f-conjugation (~(X), ~(Y), et(f)): ~E+(f) 
---> ~E_(f) to the geometric f-conjugation (~(X),  ~(Y), 13(f)): ~+(f) ---> ~E_(f). 

Given an..~'-topos ~ an,/t-topology on �9 is an assignment j of  an 
.g"(X)-topology j(X) on the X-topos ~(X) to each X ~ Ob..g r subject to the 
following condition: 

(5.3.6) For each f: X ---> Y E Mor-Jf', the geometric f-functor ~(f):  ~E(Y) 
�9 (X) is localized with respect to j(Y) and j(X). 

A localized~/d-topos is a pair ( ~  j) of  an..~f-topos ~E and an Jr-topology 
j on ~ whose associatedJt'-topos ~O( .g" ;  ~E, j) is defined as follows: 

(5.3.7) ~ I ~ ( ~ ;  ~, j)(X) = ..~'S'~(X; ~E(X), j(X)) for each X e Ob.4( 
(5.3.8) ~ ) ( ~ ;  ~, j)(f) = .~S9t'*(f; ~(f) ,  j(X), j(Y)) for each f: X ---) Y 

Mor.,~'. 

Given a localized~-topos (.~ j), its associated geometric..~'-functor (a i, 
cq): ~E --> ~ ( . ~ ' ;  ~, j) is defined as follows: 
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(5.3.9) For each X ~ Ob..~', aj(X) shall be the geometric X-functor 
,~j(x): ~E(X) ---> ~'S~(X; ~(X), ](X)) associated with the localized X-topos 
(~(X), j(X)). 

(5.3.10) For each t?: X -~ Y E Ob..Zt', aj(f) shall be the identity f- 
transformation, 

6. EMPIRICAL GROTHENDIECK TOPOSES 

6.1. Booleanization 

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. By interpreting the notion of a Grothendieck topology on a smallt 
category in the topos BEns~(X), we get the notion of a Grothendieck X- 
topology on a small! X-category ~.  A pair (~',_~ of a smalll X-category 
and a Grothendieck X-topology.~ on ~ is called a (smallO X-site. Given a 
small~ X-category ~,  by interpreting the notion of PreShl(~) within the 
topos BEnst(X), we get the notion of,~'..~S~t(X; ~') externally, and the 
Yoneda embedding of ~' into~L~_-_~t(X; ~)  within the topos BEnst(X) is 
denoted by/,,. 

By simply Booleanizing Theorem 2.3.1, we have the following. 

Theorem 6.1.1. Given a small~ X-category ~,  there is a bijection between 
the Grothendieck X-topologies on ~ and the X-topologies on the X-topos 
~'~,~.,~ l (X; ~':'). 

Given a Grothendieck X-topology.~on a small1 X-category ~', the X- 
topology on.~'~,~S~,(X; ~)  corresponding to .~is  denoted by/[-?]. 

6.2. Relations Between Two Booleanizations 

Let f: X_ --> X+ be a morphism of BLoc, which shall be fixed throughout 
this subsection. For the proofs of the following three theorems, the reader is 
referred to Nishimura (1996a, w 

Theorem 6.2.1. Let r be an f-functor from a smallt X+-category ~'+ to 
a small~ X_-category ~_.  Then there is, up to natural f-isomorphisms, a 
unique f-functor 

~ ' ~ ( f ;  ~v): ~ ' ~ , ( x + ;  ~+) ---> ~'~,~_~,(x_; ~_)  
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mapping smallt X+-colimits to X_-colimits and making the following dia- 
gram commutative: 

~g 
~.~.~9)~ ~ (f; go) 

~'..~SCr~(X+; ~+) > ~ . ~ ( X _ ;  ~_) 

go 

Theorem 6.2.2. In the above theorem, if we assume also that ~'+ is X+- 
finitely X+-complete and that 9-maps X+-finite X+-limits to X_-limits, then 
the f-functor 

~'~,~..r go):..%'.~,~,c~(X+; ~+) --> ~'~,~.9~(X_; ~_) 

is a geometric f-functor. 

Given two smalll X_+-sites ~_+,_~_+) with ~+[lx+] being nonempty, an 
f-functor go: ~+ --> ~_  is said to be an f-morphism from the X+-site (~'+,.~+) 
to the X_-site (~'_, _~_) if g0[lx+] is a morphism of sites from 
(~'+[lx+],-~+[lx+]) to (~ '-[ lx_],~-[lx_]) .  

Theorem 6.2.3. For any f-morphism go from a smalll X+-site (~§ to 
a small! X_-site (~'_, Se_) with ~'+[lx+] being nonempty, the geometric 
f-functor 

~ '~ ,~r~ ' ( f ;  go): ~ ' ~ r  ~(x+; ~+) --> ~'~,~s')r ~(x_; ~'_) 

is localized with respect to the Grothendieck X_+-topologies,,,[Sa+]. 

6.3. Quantization 

Let.,K," be a manual of Boolean locales, which shall be fixed throughout 
this subsection. A (small2)c~'-category ~ is a function ~ on Ob~" U Mor..sf 
subject to the following conditions: 

(6.3.1) For any X E Ob~r, ~(X) is a small2 X-category. 
(6.3.2) For any s X --> Y ~ Mor~, f~(f) is an f-functor from ~(Y) to ~(X). 
(6.3.3) The assignments X ~ Ob.~ r ~ (X, ~(X)) and f ~ Mot.Z/,-, (f, 

~(f)) constitute an empirical framework over.~t'. 

The condition (6.3.3) gives a natural bijection between theJ/-categories 
and the empirical frameworks overr so that we can safely speak, e.g., of 
the category EObj(~) of empirical objects of ~. 
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An r ~ is said to be Zt'-finitely Jt'-complete if it obeys the 
following conditions: 

(6.3.4) For any X ~ Ob .~', the X-category ~(X) is X-finitely X-complete. 
(6.3.5) For any f: X ---> Y ~ Mor Z~', the f-functor ~(f) maps Y-finite Y- 

limits to X-limits. 

Given a smalll ..r Jt-complete ~"-category ~, its associated .~r 
topos ~1 : r  f$) is defined as follows: 

(6.3.6) For any X E Ob ~', ~ r e ~ ) l ( ~  ~)(X) shall be the X-topos 
~'.-~,-~-~ t (x; ~(x)) .  

(6.3.7) For any f: X ---> Y ~ Mor ..~', ~ r e ~ D l ( ~ ;  ~)(0 shall be the 
geometric f-functor ~ ' 9 ~ 1 ( f ;  ~(0)  from ~'9~S'~Yt(Y; f~(Y)) to 
~'~,r162 ~ (X; ~(x)).  

Given a smallt ,/e-finitely ~"-complete .~-category ~, a Grothendieck 
.If-topology on ~ is an assignment E of a Grothendieck X-topology ~(X) 
on the small~ X-finitely X-complete X-category ~(X) to each X ~ Ob .~  
subject to the following condition: 

(6.3.8) For each f: X ---> Y ~ Mor .,K,', the f-functor ~(f): ~(Y) --> ~(X) 
is an f-morphism from the Y-site (~(Y), E(Y)) to the X-site (~(X), 52(X)). 

A pair (~, ~) of a small~ ..~"-finitely ..~'-complete ..~/-category and a 
Grothendieck ..~e'-topology on ~ is called a (smallO ~-site. Given a small! 
~"-site (~, E), the assignment X ~ Ob .~ /~ , [~ (X) ] ,  to be denoted ][~], is 
an ..~-topology on the ~[-topos ~ l : e ~ ) t ( ~ ;  ~). The resulting ~t'-topos 
~ D ( ~ ;  ~ l : e ~ ] l ( ~ ;  ~), ][E]) is denoted by @~D~(..d'; ~, E). 

7. THE 2-CATEGORY OF EMPIRICAL TOPOSES 

7.1. The 2-Category BTOP 

The 2-categbry BTOP2 consists of the following entities: 

(7.1.1) Its objects are all pairs (X, ~-) of X E Ob BLoc0 and a small2 
X-topos. 

(7.I.2) Its morphisms from (X; J )  to (~, S:) are all pairs (f, 9 )  of f: X 
---> Y ~ Mor BLoc0 and a geometric f-functor ~." S '~ ---> 37. 

(7.1.3) Its 2-arrows from (f,~): (X,3) --> (Y;,S:) to (g, ~e): (X, 9)  ---> (~, 
exist provided that 

(7.1.3.1) f = g 

and are all natural f-transformations from 9-to W. 
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It is easy to see the following: 

Theorem 7.1.1. BTOP2 is a 2-category with respect to the following 
operations: 

(7.1.4) The composite of morphisms (f, ~'): (X,~') ---> (Y, ~q') and (g, $e): 
(E, 3 )  ---> (Z, ~ shall be (g o f, 9-o ~'), to be denoted by (g, W) o (f, 9-). 

(7.1.5) The vertical composite of  a 2-arrow ct from (f, 5r): (X,S ~) ---> CE, 
3 )  to (g, g'): (X, S') ---> (Y, 3 )  and a 2-arrow 13 from (g, g'): (X, S'9 ---> (Y, J )  
to (h,,,~r (X,S  '~) ---> ('E, 3 )  shall be 13.ot. 

(7.1.6) The horizontal composite of a 2-arrow ct from (f, 9) :  (X,S  ~) ---> 
(Y, ~-') to (g, W): (X,S ~) ---> (Y,..q') and a 2-arrow 13 from (f', ~"): (Y,S ~) ---> (Z, 
~ t o  (g', W'): ('~,,.~) ---> (Z, g/) shall be eto13. 

The objects and morphisms of BTOP2 constitute a category to be denoted 
by BTop2. 

7.2. The 2-Categories BGEOM* and B G E O M ,  

The 2-category BGEOM* consists of  the following entities: 

(7.2.1) Its objects are all pairs ( f , 9 )  of  f: X_ --> X+ ~ Mor BLoc0 and 
a geometric f-functor3rfrom a small2 X+-topos ~'+ to a small2 X_-topos ~_.  

(7.2.2) Its morphisms from (s X_ ---> X+, ~." ~'+ --> ~_)  to (f': XL ---> 
X~, ~,~: ~ .  ---> ~'_') are all triples ((h_: X_ ---> XL,,gr ~'_ ---> ~'_), (h+: X+ ---> 
X~.,~+: ~ .  ---> ~'§ or), where 

t . - -  (7.2.2.1) (h_+: Xx --> X+_',r177 ~"+ ----> ~ z )  e Ob BGEOM2 
(7.2.2.2) h+ o f = f' o h_ 
(7.2.2.3) ct is a natural h+ o f-transformation from 5ro,~+ to,S"_ o ~ ' .  

(7.2.3) Its 2-arrows from ((h_, ,gO'_), (h+,Z+), et): (f, ~ )  ---> (f', Y )  to 
((k_,~'_),  (k+,o~z,(+), 13): (f,-~) ---> (f', ~ ' )  exist provided that 

(7.2.3.1) h_+ = k_+ 

and are all pairs (tr_, tr+), where 

(7.2.3.2) crx are natural h_+-transformations fromX_+ to~_+. 
(7.2.3.3) 13.(9-o tr+) = (tr_ og - ' ) . a  

By the same token as in Section 2. I, we have the following result. 

Theorem 7.2.1. BGEOM~ is a 2-category with respect to the follow- 
ing operations: 

(7.2.4) Given two morphisms 
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then 

shall be 

((h_,,~_), (h+,,~+), ~): (f,,.9') --9 (f',,.:,~") 

((k_,,.~(_), (k+,,.~+), 13): ( f ' ,~")  --+ (f,, .9") 

((k_,,.~'_), (k+,o~"+), 13) o ((h_,,~_), (h+,,~+), cx) 

((k_ o h_, ,~_ o~_) ,  (k+ o h+,,~+ o~'+), (r o 13)'((x o.g~'+)) 

(7.2.5) Given three parallel morphisms ((h_, ,,,~_), (h+, ,~+), o0, ((k_, 
9/(_), (k+,,Yf+), 13), and ((1_,..S"_), (1+,.~§ 3'): (f, .93 --) (f', .9'), the vertical 
composite of 2-arrows 

(or_, or+): ((h_,,,~'_), (h+,,~+), a)  ---> ((k_,,Y,f_), (k+,,~"+), 13) 

and 

(,r_, "r+): ( (k_,~_) ,  (k+,~r+), 13) ~ ((1_,.~_), (k,-~+), 3') 

in notation ('r_, "r+). (~r_, cr+), shall be (-r_ .or_, %.  or+). 
(7.2.6) Given two pairs of parallel morphisms 

((h_,,~_), (h+,X+), or), ((k_,,.g~'_), (k+,,Yf/+), 13): (f,,.9') ~ (f',,5 r ' )  

( ( h ' ~ _ ) ,  (h+,~+), cx'), ((1C,~("), (k+,..~), 13'): ( f ' , Y )  --> ( f" ,Y ' )  

the horizontal composite of 2-arrows 

(o'_, or+): ((h-,,,~-), (h+,~+), c~) --+ ((k_, ,.~_ ), (k+,,Y/~+), 13) 

('r_, %): ((h'-,,,~'), (h~.,,,~'), a ' )  --> ((k'_,,~'), (k+,oT('+), 13') 

in notation (-r_, %) o (cr_, cr+), shall be (cr_ o -r_, ~r+ o %). 

The objects and morphisms of B G E O M *  constitute a category which 
we denote by BGeom*.  

Now we introduce a variant of the 2-category BGEOM2,  to be denoted 
by B G E O M ~  which consists of the following entities: 

(7.2.7) Its objects are all pairs (f, ,99 of  f: X_ ---) X+ E Mot  BLoeo and 
a geometric f-functor,.f-from a small2 X+-topos g~+ to a small2 X_-topos ~_ .  

(7.2.8) Its morphisms from (f: X_ --+ X+, ~." ff+ --> re_) to (f': X~ --> 
X~, 9-': g~+ --+ ~") are all triples 

((h_: X_ -+ XL,,,~_: ,~" ---> ~_) ,  (h+: X+ --+ X~.,,,~+: ~+ --) ~'+), cx) 

where 
# (7.2.8.1) (h+_: X+ ---) X+_',,~§ if" --~ ~'_+) E Ob B G E O M ~  
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(7.2.8.2) h+ o f = f' o h_ 
(7.2.8.3) a is a natural h+ o f-transformation from,~_ o ,9 '  to 

9-oX+. 

(7.2.9) Its 2-arrows from ((h_, ,~_), (h+, ~+), a): (f, 9-) --> (f ' ,  ,9 ' )  to 
((k_,Sf_), (k+,~'+), 13): (f, ,9) ~ (f ' ,  9 ' )  exist provided that 

(7.2.9.1) h+- = k_+ 

and are all pairs (or_, o'+), where 

(7.2.9.2) or+ are natural h• from,,~r to~(+-. 
(7.2.9.3) 13. (or_ o ,9") = (3-o or+). a 

By the same token as in Section 2.1, we have the following result. 

Theorem 7.2.2. BGEOM~ is a 2-category with respect to the follow- 
ing operations: 

(7.2.10) Given two morphisms 

((h_,,,~_), (h+,,,~+), et): (f,.~-) ---> ( f ' , 3 - ' )  

((k_,,.~f_), (k+,,.~+), 13): ( f ' , 9  -r) ---9 (f", -,-,-,-,-,-,-,-,-,-~') 

then 

shall be 

((k_,,2{_), (k+,,.~(+), 13) o ((h_,,,~_), (h+,,Yf+), cx) 

((k_ o h_ , ,~_  o .~_), (k+ o h+,a~+ o~+) ,  (or o,.U{+). (/q~_ o 13)) 

(7.2.11) Given three parallel morphisms ((h_,,~_),  (h+,,,~+), a), ((k_, 
-~'_), (k+,,.~(+), 13), and ((l_,Sa_), (1+,.~+), ~/): (f,,.9") ----> (f',.9-'), the vertical 
composite of 2-arrows 

(or_, or+): ((h_,,,~_), (h+,,~+), ~) ~ ((k_,~"_), (k+,~"+), 13) 

('r_, 'r+): ((k_,o~z{'_), (k+,.Yf/+), 13) ---) ((1_,..~_), (l+,.Sa+), T) 

in notation (-r_, a-+)-(or_, or+), shall be ('r_-or_, "r+-a+). 
(7.2.12) Given two pairs of  parallel morphisms 

((h_,,,~_), (h+,,,~+), a), ((k_,o~_), (k+,,~+), 13): ( f ,5  r) ---) ( f ' ,3- ' )  

((hL,~_), (~,,~+), a ' ) ,  ( ( ~ . ~ ' ) ,  (k+,~. ) ,  13'): (f', 6r ' )  ~ (F, Y )  

the horizontal composite of 2-arrows 

(or-, or+): ((h_,,,~'_), (h+,~+), a )  ---) ((k_,,U{_), (k+,Y{_), 13) 

('r_,-r+): ((hL,~r (~,,~+), a ' )  ~ ((l~,,,~'_), ( ~ , X ' ) ,  139 

in notation ('r_, %) o (o_, or+), shall be (or_ o 'r_, or+ o 'r+). 
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The objects and morphisms of B G E O M 2  constitute a category which 
we denote by BGeom*.  

We close this subsection with a proposition connecting the two categories 
BGeom2 and BGeom~, for which we first need to fix some notation and 
terminology. Let us consider the following diagram in BTop2, in which it is 
assumed t h a t e o h _  = h + o f a n d f o k _  = k+og:  

(e, go) 
(X+, ~+)  ( (X- ~ - )  

T (f, (Y+, J+) < (Y_, 3-_) 

(k+, ~r l [(k_,~_) 

(z+, ~'+) < (g' ~3 (z_, ~'_) 
Given a natural e o h_-transformation et: 5rocW+ -->,~r162 o g' and a natural f o 
k_-transformation [3: ,~ og~(+ - - , ~ _  o5~, we denote the third component of 
the composite ((h_,cW_), (h+,,~+), [3) o ( (k_,~C),  (k+,,Y,r+), et) in the category 
BGeom~ by [3 o *ct, which is surely a natural e o h_ o k_-transformation 
from ~' o~+ oZ+ to ,~_ o,,W_ o g,. 

Let us consider the following diagram in BTop2, in which it is assumed 
that e o h_ = h+o f a n d  f o k _  = k+og:  

(x+, ~_) (Y+, ~+) (z+, ~'+) 

0r ~h_,xe_) (Y_,F_) ~k_,~_) (Z_, ~'_) 

Given a natural c o h_-transformation ecX_ o if' .--)9-oX~+ and a natural f o 
k_-transformation [3: Y/_ o ..q-.-_) ~ o,y/+, we denote the third component of 
the composite ((h_, Xr (h+, Z(+), or) o ((k_, .~_), (k+, ,Yr [3) within the 
category B G e o n ~  by [3 o ,et, which is surely a natural h+ o k+ o g-transformation 
fromY/_ o y _  o 8' to ~ o.Vg,_ o ~ .  

By the same token as in Proposition 2.1.7, we have: 

Proposition Z2.3. Consider the following diagram within the category 
BTop2, in which it is assumed that dl o e2 = e l  o d2 ' gl o es ---- e2 o g2, d2 o 

f2 = fl  ~  a n d  g2 ~ f3 = f 2 ~  �9 
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(el, g'l) fit, ~ )  
(X,,~I) < (X.,,~.,) ,: (X3,~3) 

(YI, ~I) <(e2, if2) (Y2, ~2) ((~2, ~2) c~r3, ~3) 

( z .  ~'1) <(~3, g3) (7-.2, ~3) <(6, ~ )  (z3, g"3) 

Given a natural d I o e2-transformation a: ~2 ~ -"~'~2 ~ ~1, a natural gt ~ 
e3-transformation a ' :  $'3 ~ g'~ --> g'2 o $'2, a natural d2  ~ f2-transformation 13: 
~2 ~ ~ 3  ~  and a natural g2 o f3-transformation 13': ~3 o if2 --> ~'3 o 
~2, we have 

(13' o .13) o , ( a '  o * a )  = (13' o , a ' )  o *(13 o , a )  

7.3. T h e  2 - C a t e g o r y  ETOP2 

Let ~," be a manual of  Boolean locales, which shall be fixed throughout 
this subsection. The 2-category ETOP2(~') or ETOP2 for short consists of  
the following entities: 

(7.3.1) Its objects are all small2 Je'-toposes. 
(7.3.2) Given two small2 ~'- toposes (~ and ~ its morphisms from (~ 

and ~ are all pairs (~3, c~) where: 

(7.3.2.1) ~ is an assignment, to each X E Ob .~f', of  a geometric 
X-functor ~)(X) from (~(X) to ~(X).  

(7.3.2.2) c~ is an assignment, to each f: X ---> Y ~ Mor .~?', of  a 
natural f-transformation ~(f) from ~(f)  o ~)(y) to ~(X) o (~(f), 
so that ((f, ~ (0) ,  (f, (~(f)), r is a morphism from (idx, 
,~(X)) to (id~ ~)(Y)) in the 2-category BGEOM~ on the one 
hand, and ((idx, @(X)), (id~ ,~(Y)), ~(f)) is a morphism from 
(f, ~(f))  to (f, (~(f)) in the 2-category B G E O M ~  on the 
other hand. 

(7.3.2.3) The assignments X ~ Ob ~tr ,-, (idx, ~(X))  and f 
Mor ~ ~ ((f, ~E(t')), (f, (~(f)), a(f)) constitute a functor from 
the category .,K/to the category BGeon~.  In particular, for any 
f: X ---> Y E Mor ,• and any g: Y ---> Z ~ Mor .,~", we have 
a ( g  o 0 = ( a ( 0  ~ (~(g))  �9 ( ~ ( 0  ~ a(g)) .  
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(7.3.3) Its 2-arrows from (~,  a): ~ --) ~ to (R, [3): ~ -4 ~ are all assignments 
g, to each X ~ Ob A', of  a natural X-transformation or(X): ~(X) -4 ~(X) 
such that for any f: X -4 Y E Mor A', (or(X), or(Y)) is a 2-arrow from 

((idx, ~b(X)), (idy, O(Y)), a(r (f: ~(f))  -4 (f, ~(r 

to 

((idx, R(X)), (idv, R(Y)), [3(0): (f, ~(f))  -4 (f, ~(f ) )  

within the 2-category BGEOM~. 

Theorem 7.3.1. ETOP2 is a 2-category with respect to the following 
operations: 

(7.3.4) Given three small2 Jt'-toposes ~ ,  ~ ,  and H, the composite (~, 
~/) of (~3, c0: ~ -4 ~ and (~,  [3): �9 -4 1I, in notation (~, "y) = ($~, [3) o 
(/0, e0, shall be such that: 

(7.3.4.1) For any X ~ Ob J/ ,  ~(X) = ~(X)  o 0(X).  
(7.3.4.2) For any f: X -4 Y ~ Mor .,K, we have 

((idx ~(X)), (idv, ~(Y)), ~(f)) 

= ((idx, ~)(X)), (idy, ~)(Y)), (x(f)) 

o ((idx, ~(X)), (idy, ~(Y)), [3(f)) 

within the 2-category BGEOM~. 

(7.3.5) Given three morphisms (~), (x), (~,  [3), and (E, ~/) from a small2 
.g-topos ~ to a small2 .g-topos ~,  the vertical composite v of 2-arrows or: 
(~), (x) -4 (~,  [3) and "r: (~,  [3) -4 (E, ~/), in notation v = -r- or, shall be such 
that for any f: X -4 Y E Mor .s we have 

(v(x) ,  v(Y)) = ('r(X), "r(Y)). (o'(X), (r(Y)) 

within the 2-cat6gory BGEOM*.  
(7.3.6) Given two pairs of  parallel morphisms (~,  (x), (R, [3): (~ -4 

and (~3', or'), (~ ' ,  [3'): ~ -4 11, the horizontal composite v of 2-arrows or: 
(:0, a)  -4 (R, [3) and "r: (@', [3') --~ (R',  [3'), in notation v = "r o (r, shall be 
such that for any f: X ---) Y ~ Mor A', we have 

( v ( x ) ,  v (v ) )  = ((r(X), o'(Y)) o ( 'r(x),  "r(Y)) 

within the 2-category BGEOM~. 

Outline of the proof. The 2-categorical structure of ETOP2 follows 
largely from that of  BGEOM~. It remains only to note that ~/in (7.3.4) is 
guaranteed to satisfy the condition (7.3.2.3) by dint of  Proposition 7.2.3. �9 
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8. EMPIRICAL CLASSIFYING TOPOSES 

8.1. Rings Within Boolean Toposes 

Let X be a Boolean locale and 3-a small2 X-topos�9 By interpreting the 
notion of Rng(~) within the topos BEns2(X), we gt the notion o f ~ A ~  (X; 
3)  externally. Similarly, by interpreting the notions of LocRng(3) and fp- 
Rng(~) within the topos BEns2(X), we get the notions of ~ A ~  (X; 3)  
and/fl-~'~A~ (X; 9) respectively. We write BRng(X; 3), BLocRng(X; 93, and 
fp-BRng(X; 9)  for ~ ' ~ j ,  (X; ~-)[ lx], ~ (X; 3)[Ix], a n d / f l - ~ ' ~  (X; 
~-)[lx], respectively. If the topos ~-is ~ i ( X )  (i = 0, 1), then ~ ( X ;  
J) ,  ~ ' ~  (X; ~ - ) , / f l - . ~  (X; 9), BRng(X; 3), BLocRng(X; J )  and fp- 
BRng(X; ~) are denoted by ~ ' ~ i ( X ) ,  ~ A ~ i ( X ) ,  / f i -~ '~ i (X) ,  
BRngi(X), BLocRngi(X), and fp-BRngi(X), respectively. We denote by 

-~z~[X] of-~Za~ the Grothendieck X-topology o n / f ~ - ~  p obtained simply 
by interpreting Lza~ within the topos BEns2(X). 

Let f: X_ ---> X+ be a morphism of Boolean locales and ~." ~+ --> ~-_ a 
geometric f-functor of small2 X_+-toposes. Then~-naturally induces f-functors 
~ ? ~ :  ~ (X+; ~+) --> ~ b ~  (X_; ~--_) and ~ . ~ :  ~ (X+; ~+) --> �9 

(X_; ~'--). The geometric f-functor f~,~ o: ~'~"~ o(X+) --->.-~8~,'~ o(X-) 
naturally induces an f-morphism 

~ . . ~ o p :  ( ,~-~7.~ (X+; ~+)~ -'-') ( ~ - ~ p  (X-, ~---)~ 

of X+-sites. 

8.2. Rings Within Empirical Toposes 

Let .~" be a manual of Boolean locales, which shall be fixed throughout 
this subsection�9 Let ~ be a small2 /e-topos. Its associated .~-category 
~ n E ( K ;  ~) is defined as follows: 

(8.2.1) For each X �9 Ob ~', ~ n ~ ( ~ ;  ~)(X) shall b e ~ ( X ;  ~(X)). 
(8.2.2) For each f: X --> Y �9 Mor ./[, ~ n g ( ~ ' ;  ~)(t) shall be 

:g(f).~,,: ~ ( Y ;  :~(Y)) - - ) ~ , ( x ;  5~(x)) 

We write ERng(Sg) for EOhj(~Rn6(.~; ~)). 
Given a small2 ~'-topos ~, we define its associated .g/-category 

~goc~Rrtg(.g,'; 5~) as follows: 

(8.2.3) For each X �9 Ob .g", ~oc~Rng(.g/; 5~)(X) shall be 
~ ( x ;  ~(x)). 

(8.2.4) For each f: X -+ Y �9 Mor .~, @52~)c~ng(M'; ~)(f) shall be 

We write ELocRng(~) for EObj(~Dcff ing(~;  2)). 
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The ..r .g"-cocomplete .gl-category fla-~Rngo(.~ is defined as 
follows: 

(8.2.5) For each X ~ Ob r ~l~-~{Rn~o(.gc)(X) shall be fl0-Jb, a~o(X). 
(8.2.6) For each f: X --+ Y E Mor Jr', fp-~{Rn~ofe/t)(f) shall be 

-->,#-=+=%,o(X) 
The assignment X ~ Ob ~ ,--, Aaz~[X] gives a Grothendieck..Ct'-topology 

on [p-~rt~0(.gt') ~ 

8.3. The First Preliminary Theorems 

Let X be a Boolean locale, which shall be fixed throughout this subsec- 
tion. We denote by BTOP2[X] the sub-2-category of BTOP2 whose objects 
are all pairs (X; 33 of X and a small2 X-topos 37, whose morphisms from (X, 
S ~) to (X, 3)  are all pairs (idx, ~ )  of idx and a geometric X-functor from 3- 
to S~, and whose 2-arrows from (idx, 9): (X, oc~ --> (X, J )  to (idx, ~'): (X, 

--> (X, #3 are all natural X-transformations from 9-to ~'. For simplicity 
we will identify (X, 3)  with 3-and (idx, 9 )  with .W within the 2-category 
BTOP2 { X], but the reader should not forget that the direction of a geometric 
X-functor as a morphism of BTOP2[X] is the reverse of that of the geometric 
X-functor itself. 

We denote by BTop2[X] the category that the objects and the morphisms 
of BTop2[X] constitute. Given a small2 X-toposS~, the assignment 9 - ~  Ob 
BTop2[X] ,-, BTOP2[X](J,,S a) naturally induces a contravariant functor from 
BTop2[X] to Cat2, while the assignments J - ~  Ob BTop2[X] ~ BRng(X; 
33 and3-~ Ob BTop2[,[,X] ~ BLocRng(~3 naturally give rise to contravariant 
functors from BTopz[X] to Cat2. 

By simply Booleanizing Theorems 2.4.1 and 2.4.2, we get the follow- 
ing theorems: 

Theorem 8.3. I. For any smalll-X-cocomplete small2 X-topos J,, there is 
an equivalence of categories 

BTOP2[X](j,, ~q~,~gq/,t(X;/ff~_,,~,,qb~ 8p(x)) ) .z_> B R n g ( ~  

which is natural in 37. 

Theorem 8.3.2. For any smallj-X-cocomplete small2 X-topos J,, there is 
an equivalence of categories 

BTOP2[X](F,, ~'~l(X;/#-..~q~a~ 8P(X),.~Z~r)) --+ BLocRng(~ 

which is natural in ~.. 
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8.4. The Second Preliminary Theorems 

Given f: Y---> Z ~ Mor BLoco, a small2 Y-topos~, and a small2 Z-topos 
~,, we denote by BTOP2[f]((YSa), (Z, 3 ) )  the full subcategory of  BTOP2((~, 
SO, (Z, J~)) whose objects are all (g: Y ---> Z, ~': 3--->S0 ~ BTOP2(C~,Sa), 
(Z, 93) with g = f. 

We now introduce a category to be denoted by BTop2[,l,]. Its objects 
are all pairs (f: X_ ---> X.,  3-_) of f ~ Mor BLoco and a small2 X_-topos 3-_. 
Its morphisms from (f: X_ --> X+, J _ )  to (f': XL ---> X_~, 3-_') are all triples 
(h_, h+,Yf_) subject to the following conditions: 

(8.4.1) (h_ ,~_) :  ( X _ , J _ )  ---> (XL, 3- ' )  E Mor BTop2 
(8.4.2) h+: ~ ---> X+ E Mor BLoeo 
(8.4.3) la+ o f' o h -  = f 

The composition of 

(h_, h+,,~_): (f: X_ ---> X+ , J_ )  ---> (f': X~_ ~ X~.,Y_) 

and 

(k_, k+,3e'_): (f': X~_ ---> X~.,3-') ---> (f": X~ ---> XT,~") 

within the category BTop2[,l,], to be denoted by (k_, k+ ,~_)  o (h_, h+,,~_), 
is defined to be (k_ o h_, Ix+ o k+,,,~_ o.~'/_). 

We denote by BTop2[.I,X] the category whose objects are all triples CY, 
~,, f) with (~, 3 )  ~ Ob BTop2 and f: Y --+ X ~ Mor BLoc0 and whose 
morphisms from (Y,~,, f) to (Z, gg, g) are all (h,,,~f): CK,3) --0 (Z, SQ E Mor 
BTop2 with g o h = f. The category BTop2[,I,x] can naturally be regarded as 
a subcategory of  BTop2[,l,] whose objects are all (f: X_ ---> X+, 3-_) ~ Ob 
BTop2[.},] with X+ = X and whose morphisms are all (h_, h+, Y~_) ~ Mor 
BTop2[.l,] with h§ = idx. Given a small2 X-toposg a, the assignment (Y,~, f) E 
Ob BTOP2[$X] ~ BTOP2[f]((Y,J'), (X,SP)) naturally induces a contravariant 
functor from BTop2[,I,X] to Cat2, while the assignments CK, ~,, 0 ~ Ob 
BTop2[,[,X] ~ BRng(~q3 and (Y, J,, f) E Ob BTop2[,[,X] ,-* BLocRng(.93 
naturally give rise to contravariant functors from BTop2[$X] to Cat2. 

Theorems 8.3.1 and 8.3.2 are generalized as follows: 

Theorem 8.4.1. For any (~,~,, f) E Ob BTop2[,I.X] with3-being small~- 
Y-cocomplete, there is an equivalence of categories 

BTOP2[f](fY, 33 ,  (X, .~9 ,~ ,c~(X;s~- . .~ j~  8P(X)))) -7-> BRng(~-') 

which is natural in C~, ~,, f). 

Theorem 8.4.2. For any C's f) E Ob BTOPz[,I,X] with3-being smalll- 
Y-cocomplete, there is an equivalence of categories 
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BTOP2[f](('Z, 3) ,  (X,~'STt(X;/fi-~'Jb~ 8P(X),-Z~'Za~))) -~ BLocRng(J) 

which is natural in (Y, ~,, f). 

8,5. The Main Theorems 

Let .~" be a manual of Boolean locales, which shall be fixed throughout 
this subsection. By Theorem 8.4.1 it is easy to see the following. 

Theorem 8.5.1. For any smallrcocomplete small2 ~"-topos ~,  there is 
an equivalence of categories 

ETOP2(~re~Dx(~";  ~P-~RngSP(/e')), ~ )  -~ ERng(~)  

which is natural in ~.  

By Theorem 8.4.2 we can see easily the following: 

Theorem 8.5.2. For any small~-cocomplete small2 ~"-topos ~,  there is 
an equivalence of categories 

ETOP2(~ ) tOtr ;  ~I9-~RrtgSP(~), ~z~), ~ )  -~ ELocRng(~)  

which is natural in ~.  
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